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DEDICACTION 

Heat transfer is a fundamental discipline that lies at the heart of our environment and our 

technologies. Whether it's regulating the temperature of the human body, optimizing the 

performance of an engine, designing air conditioning systems or improving the energy efficiency 

of buildings, the principles of heat transfer are constantly at work. Mastering heat transfer is 

therefore essential for engineers and scientists, enabling them to develop innovative solutions, 

improve the efficiency of existing systems and meet the energy challenges of tomorrow, while 

ensuring comfort, safety and performance. 

This handout is the product of four years of experiences teaching heat transfer in the Physics 

Department at the University of Tiaret. It's primarily aimed at Material Science students (3rd year 

LMD Energy Physics and Fundamental Physics), but also at any other higher education student 

looking to deepen their knowledge of heat transfer. 

The objective of this manuscript is to provide a comprehensive overview of heat transfer, 

particularly the phenomenon of conduction. It starts with the fundamentals of heat transfer 

(Chapter 1), then it progresses to the study of steady-state conduction, exploring one-dimensional 

conduction in Chapter 2 and two-dimensional conduction in Chapter 3, using both analytical and 

numerical tools (finite difference method). Chapter 4 is dedicated to solve the transient heat 

equation, relying on various techniques such as the Laplace transform, graphical and tabular 

methods, and the method of variable separation. 

To reinforce skill acquisition, solved exercises are included at the end of each chapter.           

We sincerely hope this handout serves as a practical and relevant reference for everyone interested 

in the study of heat transfer. 
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NOMENCLATURES 

A  Surface [m2] 

q  Heat flux [W/(m2)] 

  Thermal conductivity [W/(m.K)] 

T

n




Temperature gradient [K/m] 

gE
•

 Rate of heat generation [W] 

dx Elementary position in x direction [m] 

dy  Elementary position in y direction [m] 

dz  Elementary position in z direction [m] 

q
•

 Rate of heat generation per unit volume [W/m3] 

stE
•

Rate of energy stored in the control volume [W] 

inE
•

Energy inflow [W] 

outE
•

 Energy outflow [W/m3] 

convq Convective heat flux [W/m2] 

h  Convection heat transfer coefficient [W/(m2.K)] 

T  Fluid temperature[K] 

T  Temperature [K] 



 

3 
 

 Density [kg/(m3)] 

pC Specific heat [J/(kg.K)] 

t  Time [s]  

r Radius [m] 

  Rtae of heat transfer [W] 

  Stefan Boltzman constant [W/(m2.K4)] 

cL Characteristic length [m] 

thR Thermal resistance [°C/W] 

oF  Fourier number 

Bi  Biot number  
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CHAPTER 1: INTRODUCTION TO HEAT TRANSFER 

 INTRODUCTION  

As known from experience, thermodynamics focuses on systems in equilibrium and the 

transitions between their states. In contrast, heat transfer deals with systems that are not in thermal 

equilibrium, classifying it as a non-equilibrium process. Consequently, a complete understanding 

of heat transfer requires more than just the principles of thermodynamics. Nevertheless, the laws 

of thermodynamics provide the fundamental principles for studying heat transfer. The first law 

states that the rate of energy input to a system equals to the rate of energy stored in it. The second 

law of thermodynamics defines the natural direction of heat flow, stating that heat spontaneously 

transfers from the high-temperature region to the low-temperature regions. 

A fundamental requirement for heat transfer is the presence of a temperature difference. 

Without this difference between two mediums, heat transfer cannot occur. This temperature 

difference drives heat transfer in much the same way that a voltage difference causes electric 

current to flow, or a pressure difference induces fluid motion. The rate of heat transfer in a specific 

direction is directly proportional to the temperature gradient defined as the temperature difference 

per unit length. Consequently, A greater temperature gradient corresponds to a higher heat transfer 

rate. 

 DEFINITIONS 

System:  

A system, as shown in figure 1.1, refers to a specific portion of the universe under 

investigation, all the rest being considered as the surroundings. A closed system is characterized 

by the absence of mass transfer across its boundaries. Conversely, a control volume, as illustrated  
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in figure 1.2, is a defined region in space that allows both mass and energy to cross its boundaries.  

 

 

 

 

Figure 1.1: System with work and heat flow . 

The thermodynamic state of a system is defined by a specific set of property values required 

to fully describe it. A system is in equilibrium when its state remains constant over time. The state 

of matter can exist in different phases: solid, liquid, or gas.  

 

 

 

 

Figure 1.2: Control volume with flow in and out, heat flow in, and shaft work out . 

Steady state 

Steady state describes a state where the temperature profile within a material remains 

constant over time. In this state, all heat introduced or produced within a substance is 

simultaneously transferred away. This concept is fundamental to engineering applications such as 

choosing insulation for superheated steam pipes to prevent heat loss, developing extended surfaces 
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(like fins) to efficiently cool electronic devices or air-cooled engines, and maintaining stable 

operation in nuclear systems . 

Unsteady state: 

 When the rate of internal heat generation or the boundary conditions of an object change, 

its temperature distribution also changes over time. This state is called as unsteady state or 

transient. Processes such as heating and cooling exemplify this behaviour. Mathematically, these 

changes force the temperature distribution to evolve . 

 MODES OF HEAT TRANSFER  

There are three modes of heat transfer: conduction, convection, and radiation. In this section, 

these modes of heat transfer are summarized. 

1.3.1 Conduction Heat Transfer 

Conduction heat transfer happens across in all three states of matter: solids, liquids, and 

gases. While often associated with solids in engineering applications, this phenomenon is also a 

significant mechanism in fluids, even when fluid motion is present. Fundamentally, conduction 

phenomenon is the transfer of thermal energy from higher to lower temperatures within a medium 

through molecular diffusion, without any bulk movement of the medium itself. (Figure. 1.3.a). 

The term diffusion is also used to express conduction. Diffusion heat transfer or conduction 

heat transfer are two statements that are equivalent in many heat transfer reports and papers. 

1.3.2 Convection Heat Transfer 

Convection heat transfer is a phenomenon observed in both liquid and gaseous phases. It is 

characterized by the bulk movement of the fluid, resulting in the transfer of thermal energy from 
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one point to another within the fluid domain. 

Convection heat transfer is directly dependent on fluid motion. If a fluid is motionless, 

convection does not occur. A typical example is the transfer of heat from a heated plate to a cooler 

fluid flowing around it. The moving fluid carries thermal energy away from the plate surface and 

distributes it throughout the fluid domain (Figure 1.3.b). 

The principal law describing this phenomenon is Newton's law of Cooling. In practical 

terms, there are three distinct types of convective heat transfer. 

 

(a)                                          (b)                                          (c) 

Figure1.3: Conduction, convection, and radiation heat transfer modes. 

Forced convection: this phenomenon occurs when an external force, like a fan or pump, 

causes the fluid to move and heat to transfer. 

Natural convection is a heat transfer mechanism in which fluid motion is driven by density 

gradients within the fluid under the influence of gravity (or other body forces). According to 

Archimedes' principle, less dense regions undergo an upward buoyant force, causing them to 

move. This phenomenon is also known in the literature as free convection. 
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Mixed convection is essentially forced convection where natural convection also plays a 

significant role and can't be ignored. For this reason, the buoyancy force must be taken in the 

equations that describe the flow. 

1.3.3 Radiation Heat Transfer 

Thermal radiation is a fundamental heat transfer mechanism where all matter with a 

temperature above absolute zero emits energy as electromagnetic waves (photons). Unlike 

conduction and convection, radiation does not require a material medium and can, therefore, 

propagate through a vacuum. As illustrated in (Figure 1.3 c), a net heat transfer occurs between 

surfaces at different temperatures, with energy flowing from the hotter to the colder body.  

 CONDUCTION HEAT TRANSFER PROCESS 

Energy transfer by conduction is accomplished in two ways: 

The first mechanism: Energy transfer through conduction occurs primarily through 

molecular interaction and is the most universal mode of heat transfer. When a substance is heated, 

its molecules gain kinetic energy and vibrate more intensely. These highly energetic molecules 

then collide with adjacent, less energetic molecules, transferring some of this vibrational energy. 

This process continues, causing a chain reaction of energy transfer throughout the material. 

This mechanism is present in all states of matter solids, liquids, and gases whenever a temperature 

gradient exists. 

The second mechanism of conduction heat transfer is through free electrons. In materials 

like pure metals, a high number of unbound electrons are able to move throughout the atomic 

lattice. These electrons are highly efficient carriers of thermal energy, significantly contributing to 
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the overall heat transfer. This explains why pure metals are excellent thermal conductors: their 

high concentration of free electrons allows for rapid energy transport. This characteristic is greatly 

reduced in alloys and is almost absent in non-metallic solids. 

 FOURIER’S LAW 

Fourier's Law is the fundamental principle of conduction heat transfer. It states that the heat 

flux (rate of heat transfer per unit area) is directly proportional to the temperature gradient in a 

specific direction. The constant of proportionality in this relationship is the thermal conductivity 

λ, which is a material property that can vary with temperature. The rate of heat transfer by 

conduction is determined as follows:  

.
T

gradT A A
n

  


= − = −


                                                                                              (1.1) 

In many systems, the area A is not constant but varies with the distance along the n direction. 

The temperature gradient is a vector oriented normal to the isothermal surface, and it 

corresponds mathematically to the directional derivative of the temperature field in that direction. 

 

 

 

 

Figure. 1.4: Temperature vectors 
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 THERMOPHYSICAL PROPERTIES 

 Understanding  thermophysical  properties  is  essential  for  analyzing and  predicting 

conduction heat transfer. These properties describe the manner in which a material responds to and 

participates in the transfer of thermal energy. For conduction, where heat is transferred through a 

stationary  medium  by  molecular  vibration  and  free  electron  movement,  three  properties  are 

particularly important: thermal conductivity, specific heat capacity, and density, which combine 

to form thermal diffusivity. 

Thermal Conductivity 

 Thermal  conductivity  (λ) quantifies  a  material's  ability  to  conduct  heat.  Simply  put,  it's  a 

measure of how easily heat can flow through a substance, its unit is [W/m.K]. Materials with high 

thermal conductivity, like metals (e.g., copper, aluminium), are excellent heat conductors and feel 

"cold" to the touch because they quickly draw heat away from your hand. Conversely, materials 

with low thermal conductivity, such as insulation, wood, or air, are poor conductors and are thus 

good insulators. 

 The  value  of  λ  depends  significantly  on  the  material's  microstructure,  temperature,  and 

pressure.  For  example,  in  solids,  heat  is  conducted  by  lattice  vibrations  (phonons)  and  free 

electrons.  Metals  have  a  high  concentration  of  free  electrons,  which  makes  them  excellent 

conductors. In liquids and gases, molecular collisions are the primary mechanism for heat transfer, 

leading to generally much lower thermal conductivities compared to solids .
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Specific Heat Capacity :  

       The specific heat capacity (Cp): represents the amount of energy required to raise the 

temperature of a unit mass of a substance by one degree Celsius (or Kelvin). It is generally 

expressed in [J/kg.K]. It essentially tells you how much thermal energy a material can store. Water, 

for instance, has a very high specific heat capacity, meaning it can absorb a lot of heat without a 

significant temperature change, which is why it's used extensively in cooling systems. Materials 

with low specific heat capacity heat up and cool down quickly. 

Like thermal conductivity, the specific heat capacity varies with temperature and phase. For 

most engineering applications, specific heat is often treated as constant over a small temperature 

range, but for larger variations, its temperature dependence must be considered. 

Density  

Density (ρ) is defined as the mass per unit volume of a material, so its unit is [kg/m3]. While 

not directly a "heat transfer" property like λ and Cp, it's crucial for understanding the amount of 

mass present to store energy. In conduction, density affects the thermal inertia of a material, i.e. 

the amount of matter available to heat up or cool down. A denser material will generally have more 

mass in a given volume, which means that it will requires more total energy to achieve a certain 

temperature change if its specific heat capacity is comparable. 

Density also varies with temperature and pressure, especially for gases and liquids, but for 

solids, it's often considered relatively constant over typical operating temperature ranges.  
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Thermal Diffusivity  

The combination of these three properties leads to a critically important derived property: 

thermal diffusivity (α). It's defined as the ratio between thermal conductivity and the product of 

the material's density (ρ) and its specific heat capacity (Cp). Thermal diffusivity measures the rate 

at which thermal energy diffuses or propagates through a material. It's the ratio of thermal 

conductivity to the heat capacity per unit volume. Materials with high thermal diffusivity respond 

quickly to changes in temperature at their boundaries because heat penetrates more quickly. 

Conversely, materials with low thermal diffusivity will take longer to undergo temperature 

changes throughout their volume. This property is particularly essential in transient (time-

dependent) conduction problems, as it directly influences the rate of temperature propagation 

within a solid.  
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Figure 1.5: Thermal conductivity of several materials at various temperatures. 
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Table1.1: Thermal conductivity of different materials. 

Materials Thermal conductivity (W/m.°C) 

Metals 

Silver (pure) 

 copper(pure)  

Aluminum (pure)  

 Nickel(pure)  

 Iron (pure) 

 Carbon steel,1% 

 Lead (pure) 

 Chrome Nickel Steel (18% Cr,8%Ni) 

 

410 

385 

202 

93 

73 

43 

35 

16,3 

Nonmetallic Solids 

Diamond 

Magnesite 

Sandstone 

Glass, window 

Maple or oak 

Hard rubber 

Styrofoam 

 

2300 

4,15 

1,83 

0.78 

0.17 

0,15 

0.033 

Liquid 

Mercury 

Water 

Ammonia 

Freon 12, CCl2F2 

 

8,21 

0,556 

0,54 

0,073 

Gases 

Hydrogen 

Helium 

Air 

Water vapor (saturated) 

Carbon dioxide 

 

0,175 

0,141 

0,024 

0,0206 

0,0146 
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 HEAT DIFFUSION EQUATION 

A major objective in heat conduction analysis is to determine the temperature field within a 

material under specified boundary conditions. This spatial temperature distribution allows us to 

calculate the conductive heat flux at any point within the medium or on its surface, as defined by 

Fourier's law. To determine the temperature distribution, we will apply the energy conservation 

principle. This involves establishing a differential control volume, identifying all relevant energy 

transfer processes, and applying their corresponding rate equations. This process yields a 

differential equation which, when solved with the appropriate boundary conditions, describes the 

temperature distribution within the medium.  

We'll now consider a homogeneous medium where convection is absent and the temperature 

field T(x,y,z) is described using cartesian coordinates. The initial step in applying the energy 

conservation method is to define an elementary control volume with dimensions of dx⋅dy⋅dz, as 

illustrated in figure 1.6. 

 

 

 

 

 

Figure 1.6: Differential control volume, dx.dy.dz, for conduction analysis in cartesian 

coordinates . 

We apply the first law of thermodynamics at a given instant by considering the energy 

transfers within our defined control volume. Due to the presence of temperature gradients, heat 
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conduction occurs across each surface. We can represent the conduction heat rates perpendicular 

to the surfaces at positions x, y, and z by qx, qy, and qz. The description of the rates corresponding 

to the opposite surfaces can be carried out using a Taylor series expansion, where we simplify the 

expressions by neglecting higher-order terms. 

x
x dx x

y

y dy x

z
z dz z

q
q q dx

x

q
q q dy

y

q
q q dz

z

+

+

+


= +




= +




= +



                                                                                                            (1.2) 

Equation 1.2 expresses that the rate of heat transfer in the x-direction at the point (x+dx) 

corresponds to that at the original point (x), with the addition of an infinitesimal variation. 

This adjustment is quantified by the product of the change rate of heat transfer with respect 

to x and the incremental distance dx. It is also necessary to take into account the internal heat 

generation within the medium represented by a source term . 

gE q dxdydz
• •

=                                                                                                                   (1.3) 

The term q
•

 represents the internal volumetric heat generation rate within the medium, 

expressed in (W/m³). Furthermore, the internal thermal energy stored in the control volume can 

also vary. For materials that do not undergo a phase change, latent heat is not considered, and the 

stored energy term is given by: 

st p

T
E C dxdydz

t


• 
=


                                                                                                       (1.4) 
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Where p

T
C

t





 represents the rate of thermal energy change per unit volume. 

It's important to note that the volumetric energy generation term q
•

 in heat transfer equations 

represents the conversion of other energy forms into thermal energy within a medium. This is a 

fundamentally different process from energy transfer mechanisms like conduction, convection, 

and radiation, which describe the movement of thermal energy from one location to another. 

The energy generation term can be positive, indicating a source of heat (e.g., from an 

exothermic chemical reaction, electrical resistance heating, or nuclear fission). Conversely, a 

negative value represents an energy sink, where thermal energy is consumed, as is the case in 

certain endothermic chemical reactions. Unlike energy generation, the stored energy term 

quantifies the rate at which a material's internal thermal energy increases or decreases.  

The final step of the energy conservation method is to combine all the rate equations to 

express the fundamental principle of energy conservation. In terms of rates, this principle is 

generally expressed as: 

Rate of energy stored= Rate of energy in + Rate of energy generated - Rate of energy out  

Mathematically, this can be written as : 

st in out gE E E E
• • • •

= − +                                                                                                           (1.5) 

Identifying the conduction rates as the energy input ,qi, and the output, qs, and then 

substituting equations 1.2  and 1.3 in equation 1.5 , we obtain : 

x y z x dx y dy z dz p

T
q q q q q q q dxdydz C dxdydz

t


•

+ + +


+ + − − − + =


                                         (1.6) 



 

21 
 

Substituting from equations 1.2, it follows that: 

yx z
p

qq q T
dx dy dz q dxdydz C dxdydz

x y z t


•  
− − − + =
   

                                                  (1.7) 

The conduction heat rates may be evaluated from Fourier’s law: 

x

y

z

T
q

x

T
q

y

T
q

z








= −




= −




= −



                                                                                                                       (1.8) 

To obtain the heat transfer rates, each heat flux term in Equation 1.8 is multiplied by the 

appropriate surface area of the infinitesimal control volume. Subsequently, by substituting these 

expressions into the energy balance (equation 1.7), and dividing the entire equation by the control 

volume (dx⋅dy⋅dz), we find: 

p

T T T T
q C

x x y y z z t
   

•          
+ + + =    

          
                                                         (1.9) 

Equation 1.9 is the general heat diffusion equation in cartesian coordinates, it represents the 

main equation for analyzing heat conduction. By solving it, we can determine the temperature at 

any point in material (x,y,z) and at any time. Despite its apparent complexity, the equation's 

fundamental meaning is a simple statement of the principle of energy conservation. When a 

material's thermal conductivity (λ) is assumed to be constant, the general heat diffusion equation 

(equation 1.9) simplifies to: 

 
2 2 2

2 2 2

1T T T q T

x y z t 

•

   
+ + + =

   
                                                                                          (1.10) 
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Where 
pC





= is the thermal diffusivity.  

The general form of the heat equation can often be further simplified. For example, in a 

steady-state system, the rate of energy stored is zero. Consequently, equation 1.9 simplifies to the 

following : 

0
T T T

q
x x y y z z

  
•         

+ + + =    
         

                                                                 (1.11) 

Moreover, under the specific conditions of one-dimensional heat transfer (for instance, along 

the x-axis) and the absence of energy generation, equation 1.11 simplifies significantly to: 

0
T

x x


  
= 

  
                                                                                                                (1.12) 

An important consequence of this result is that when heat transfer is steady, occurs in only 

one direction, and there's no internal energy generation, the rate of heat transfer per unit area (heat 

flux) is uniform throughout the heat path. The heat equation is not limited to cartesian coordinates 

and can also be expressed using cylindrical and spherical coordinate systems . 

 CONDUCTION EQUATION IN RADIAL GEOMETRY 

Equation (1.10) may be transformed into either cylindrical or spherical coordinates by 

standard calculus techniques. The results are as follows: 

In cylindrical coordinates 

                                                                  (1.13) 
2 2 2

2 2 2 2

1 1 1T T T T q T

r r r r z t  

•

    
+ + + + =

    
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In spherical coordinates 

2 2

2 2 2 2 2

2 1 1 1
sin

sin sin

T T T T q T

r r r r r t


      

•

      
+ + + + = 

      
                                           (1.14) 

The general heat conduction equations in cartesian, cylindrical, and spherical coordinates 

can be simplified significantly under common physical assumptions relevant to practical 

applications. These simplifications reduce mathematical complexity and allow us to focus on the 

dominant modes of heat transfer. 

 BOUNDARY AND INITIAL CONDITIONS. 

Boundary (surface) conditions: 

The most frequently encountered boundary conditions in conduction are as follows: 

A. Dirichlet Boundary Condition (Constant surface Temperature): 

The surface temperature of the boundaries is specified as either a constant value. This type 

of boundary condition is known as a Dirichlet boundary condition. Generally, it is expressed by  

0(0, )

( , ) L

T t T

T L t T

=

=
                                                                                                                      (1.15) 

B.  Neumann Boundary Condition (Constant heat flux): 

The heat flux boundary condition specifies the rate of heat transfer across the system's edges, 

which may be constant or vary with location and/or time, this condition dictates that the net heat 

flux at a boundary must be zero. We adopt the convention that heat flux entering a boundary is 

positive, while heat flux leaving is negative. 
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Thus, remembering that the statement of Fourier’s law is independent of the choice of 

direction for the heat flux vector qn, we can conveniently define qn such that it is positive in the 

outward normal direction from the surface. Accordingly, we have from Figure 1.7: 

''

n

T
q

n



 = 


                                                                                                                           (1.16) 

where
n




 denotes differentiation along the normal of the boundary. The plus and minus signs of 

the left-hand side of equation (1.16) correspond to the differentiations along the inward and 

outward normal, respectively, and the plus or minus signs on the right-hand side correspond to the 

direction of heat flux: positive when heat leaves the boundary (outward), and negative when heat 

enters the boundary (inward) . 

 

Figure1.7: Constant heat flux boundary conditions. 
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C. No heat flux (insulation) 

A special case of the heat flux boundary condition is the insulated or adiabatic surface, which 

is obtained by setting the heat flux to zero 
'' 0nq =  in equation (1.16). This yield: 

   0
T

n


=


                                                                                                                           (1.17) 

D.  Robin Boundary Condition (Convection): 

When the heat flux across the boundaries of a continuous body is not known, it's often 

assumed to be proportional to the temperature difference between the body's surface and the 

surrounding environment. This is described by the Robin boundary condition, which is expressed 

by the following formula: 

            ( )
T

h T T
n

 


 = −


                                                                                                      (1.18) 

Where T is the temperature of the solid boundaries, T∞ is the temperature of the surrounding 

environment at a distance far from the boundaries, and the constant h, is known as the heat transfer 

coefficient.  

The plus and minus signs of the left member of equation (1.18) correspond the direction of 

the temperature gradient (Figure 1.8).  
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Figure.1.8: Heat transfer by convection surface heat flux boundary conditions . 

E.  Heat transfer to the ambient by radiation and convection 

To model heat transfer via radiation from the boundaries of a medium, a specific boundary 

condition is necessary. Assuming a uniform but unknown temperature T1 for the medium, the 

boundary condition can be formulated to account for the combined effects of conductive and 

radiative heat transfer at the surface. The net heat flux is given by the sum of these two components, 

as described by the following expression:  

( ) ( )4 4

1 1surr surr

T
T T h T T

n
 


 = − + −


                                                                                    (1.19) 
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EXERCISES 

EXERCISE 1.1 

The temperature distribution in along cylindrical tube is:

( ) 2800 1200 3000T r r r= + −  

 Where T is in Kelvin and r is in meter. The cylindrical tube has 

inner radius of 25 cm and outer radius of 40 cm,its thermal conductivity is 50 [W/(m.K)

-Find the rate of heat transfer entering and leaving the cylinder.   

Solution 

( ) 2800 1200 3000

1200 6000

T r r r

T
r

r

= + −


= −



 

Hence, the rate of heat transfer entering per unit length is: 

( )50. 1200 6000 1r

T
A r

r
 


= − = − − 


 

( ) ( )( )

 

0.25

0,25

50 2 .0,25 1200 6000 0,25 1

23500

r

T
A

r

W

 



=


= − =



= − − 

=

 

Similarly, the rate of heat transfer leaving the system per unit length is: 

0,4

0,4

r

T
A

r
 =


= −


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( ) ( )( )

 

0,4 50 2 0,4 1200 6000 0,4

150720

r

W

 = = −  −

=
 

EXERCISE 1.2 

The temperature distribution in a plane wall of 50 cm thick at a given time is expressed by 

the relation: ( ) 2 3450 500 100 150T x x x x= − + +  

Where T is the temperature in °C and x in meters. The thermal conductivity of the wall 

material is 10 [W/m.K]. 

-Calculate the rate of heat energy stored per unit area of the wall at this instant. 

Solution 

( ) 2 3

2

450 500 100 150

500 200 450

T x x x x

dT
x x

dx

= − + +

= − + +
 

Heat entering the wall from the face being heated i.e x=0 is  

( )

( )  

0

2

0
10 1 500 200 450

10 500 5000

in

x

in
x

dT
A

dx

x x

W

 



=

=

= −

= −   − + +

= − − =

 

Heat leaving the wall i.e at x=0,5 is: 

0,5

out

x

dT
A

dx
 

=

= −  
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( )

( )  

2

0,5
10 1 500 200 450

10 500 100 112.5 2875

out
x

x x

W


=

= −   − + +

= − − + + =
 

stored in out  = −  

5000 2875 2125stored W = − =  

EXERCISE 1.3 

One side of a plane wall is maintained at 100°C while other side is exposed to a convection 

environment having T∞=10 [°C] and h = 10 [W/ (m2 .K)]. This wall has the dimensions of 3x5 m2, 

a thermal conductivity of 1,6 [W/(m. K)] and the thickness of 40cm.  

-Calculate the heat transfer rate through the wall. 

Solution  

     We have: 
23 (5) 15 A m= =  

     The heat transfer rate is:   

( )

( )

2

1 2
2     1,6 10 10

0.4

dT
A hA T T

dx

T T
Or T

  = − = −

−
= −

 

( )

( )

1 2 2

2 1

10
 10

4

   3.5 25      

T T T

Or T T

− = −

= +

 

2

125
 35.714

3.5
T C= =   
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Thus    ( )
( )

 
100 35,714

1,6 3 5 3857.16
0,4

W
−

=  =  

EXERCISE 1.4 

A large plane wall is subjected to specified temperature ( )1(0) 80T T C= =  on the left 

surface and convection characterised by 215  and 24 / ( . )T C h W m C
 =  =    on the right surface.  

Find the mathematical formulation of the temperature variation, and the rate of heat transfer 

for steady one-dimensional heat transfer. 

Data:  20,4 , 20  and 50 / ( . )L m A m W m K = = =   

Solution 

( )

2

2

1

0

and   (0) 80

( )

d T

dx

T T C

dT
h T L T

dx
 

=

= = 

− = −

 

1°/ Integrating the differential equation twice with respect to x yields 

1

1 2(x)

dT
C

dx

T C x C

=

= +

  

where C1 and C2 are arbitrary constants. Applying the boundary conditions give 

( ) ( ) ( )
2 1

2 1

2 1
1 1 2 1

At 0 : (0)

At :

C T
x T C T

h T C h T T
x L C h C L C T C

hL hL


 

 


== = =  
  − −

= − = + −  = =  
+ +
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2°/ Substituting C1 and C2 into the general solution, we get the temperature variation as: 

( )
( ) ( )

( )
1

1

24 15 80
80

50 24 0,4

26,174 80

h T T
T x x T x

hL

x



 − −
= + = +

+ + 

= − +

 

3°/ The rate of heat conduction through the wall is: 

 

131,1

(26,174) (50) 20

26174

dT
A A

dx

W

  = − =

=

=
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CHAPTER 2: ONE-DIMENSIONAL STATIONARY CONDUCTION 

 

2.1 INTRODUCTION  

 The study of one-dimensional (1D) heat conduction is fundamental in thermal engineering, 

as it models heat transfer in highly symmetric objects: the plane walls, cylinders, and the spheres 

where the heat flow is dominant along a single spatial axis. This process is governed by the heat 

diffusion equation. 

We consider two main cases: the model without an internal heat source, which describes 

simple transfer through the medium, and the model including a source term, which is necessary to 

analyze systems with internal energy generation. 

2.2 CONDUCTION WITHOUT INTERNAL ENERGY GENERATION 

Heat conduction in one dimension simplifies the general heat equation to forms that are 

solvable analytically under specific boundary conditions. The choice of coordinate system 

cartesian, cylindrical, or spherical depends on the object geometry, such as a slab, a pipe, or a 

sphere. The geometry of the system significantly influences the form of the conduction equation 

due to the divergence operator taking different forms in each coordinate system. When there is no 

internal heat generation, the resulting equation is homogeneous. In contrast, the presence of 

internal heat sources introduces a nonhomogeneous term, complicating the solution but offering a 

more realistic representation of many physical scenarios. These cases are fundamental for 

understanding thermal diffusion in a variety of engineering and physical systems. The resulting 

solutions whether transient or steady-state enable the prediction of temperature distributions, 

which are critical for thermal design. 
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2.3 STEADY-STATE ONE-DIMENSIONAL HEAT CONDUCTION WITHOUT 

HEAT GENERATION: 

2.3.1. Plan wall 

Let’s assume figure 2.1 shows a plane wall of thickness L, extending infinitely in the y and 

z directions. To ensure that the mathematical treatment is consistent with the physical behavior, 

the following conditions are applied:  

(1) Conduction only in x-direction ⇒ ( )T T x=  so 0
T T

y z

 
= =

 
 

(2) No heat source ⇒ ˙ 0gq
•

=                 (3)   Steady state ⇒ 0
T

t


=


 

(4) Thermal conductivity is constant 
teC =  

 

Figure 2.1: One-dimensional heat conduction in a solid. 

The conduction equation in cartesian coordinates then becomes: 
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2 2

2 2
0 or 0

T d T

x dx



= =


                                                                                           (2.1) 

The partial derivative is simplified to a total derivative because the equation depends only 

on the single independent variable, x. Subsequently, integrating both sides of this equation results 

in:                
1

dT
C

dx
=                                                                                                                     (2.2) 

A second integration gives: 1 2T C x C= +                                                                            (2.3) 

Thus, it is seen that the temperature varies linearly across the solid. The constants of 

integration can be determined by applying the boundary conditions: 

1

2

 0   

    

At x T T

At x L T T

=  =

=  =
                                                                                                                  (2.4) 

The first boundary condition gives C2=T1 and the second then gives : 

                    2 1 1T C L T= +                                                                                                            (2.5) 

Solving for C1 , we find: 2 1
1

T T
C

L

−
=                                                                                           (2.6) 

The heat flux is obtained from Fourier’s law:                                                             

Therefore, 2 1 1 2T T T T

L L
  

− −
= − =                                                                                            (2.7) 

Multiplying by the area gives the rate of heat conduction: 

1 2T T
A

L
 

−
=                                                                                                                             (2.8) 
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Composite wall in series  

Considering a multilayer wall (figure 2.2), the presence of several materials necessitates an 

analysis that takes into account the distinct temperature gradients shown in the three materials.  

 

Figure 2.2: composite wall in series 

The steady-state heat flux can then be expressed by: 

                                                        (2.9) 

The thermal resistance by definition is:   R th

T




= . 

Therefore 1 2 2 3 3 4 1 4

1 2 3th th th th eq

T T T T T T T T

R R R R


−

− − − −
= = = =                                                                    (2.10) 

Where 1 2 3
1 2 3

1 2 3

, ,
. . .

th th th

e e e
R R R

A A A  
= = =                                                                                (2.11) 

And   1 2 3th eq th th thR R R R− = + +                                                                                                    (2.12) 

2 1 3 2 4 3
1 2 3

1 2 3

T T T T T T
A A A

e e e
   

− − −
= − = − = −
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Composite wall in parallel 

Consider the composite wall shown in figure 2.3, which is composed of two parallel layers. 

The associated thermal resistance network can be represented by two parallel resistances, as 

illustrated in the flowing figure 

 

Figure 2.3: composite wall in parallel 

Since the total heat transfer   is the sum of the heat transfers through each individual layer 

( 1  and 2 ), the total heat transfer relationship is given by : 

                                  (2.13) 

            

1

1 2 1 2

1 1 1 1 1
 th eq

th eq th th th th

so R
R R R R R

−

−

−

   
= + = +   
   

                                                          (2.14) 

( )
( )1 21 2 1 2

1 2 1 2

1 2 1 2

1 1

th th th th th eq

T TT T T T
T T

R R R R R
  

−

− − −
= + = + = − + = 

 
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2.3.2. Radial geometry 

 Radial heat conduction through a cylinder 

Consider a long cylindrical geometry (figure 2.4) with an inner radius R1 and an outer radius 

R2, having a length L. Due to its significant length, we can neglect heat losses from the ends 

compared to the radial heat transfer. The inner and outer cylindrical surfaces are maintained at 

uniform temperatures T1 and T2. 

 

 

 

 

 

Figure 2.4: Steady state heat conduction through a cylinder. 

The general heat conduction equation in cylindrical coordinates is given by:

2 2 2

2 2 2 2

1 1 1T T T T q T

r r r r z t  

•

    
+ + + + =

    
                                                                                 (2.15) 

Assumptions 

-Heat conduction is only in radial direction. 

-There is no heat generation within the cylinder. 

-Steady state conditions i.e. temperature variation with respect to time is zero. 
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-Above equation takes the form . 

2

2

1
0

T T

r r r

 
+ =

 
                                                                                                                        (2.16) 

Or        0
d dT

r
dr dr

 
= 

 
                                                                                                                 (2.17) 

The boundary conditions applied are:  

At radius r=R1 ,    T=T1  

At radius r=R2   ,      T=T2  

Integrating equation 2.17 twice, we get : 

1 2( ) lnT r C r C= +                                                                                                                (2.18) 

Using the boundary conditions  

1 1 1 1 1 2

2 2 2 1 2 2

 ,  ,    ln

 ,  ,    ln

At r R T T T C R C

At r R T T T C R C

= = = +

= = = +
                                                                                     (2.19) 

Hence  

1 2
1

1

2

  

ln

T T
C

R

R

−
=

 
 
 

                                                                                                                          (2.20) 

                                            (2.21) 

 

Substituting the value of C1 and C2 in equation 2.18, we obtain: 

2 1
2 1 1

2

1

  ln

ln

T T
C T R

R

R

−
= −

 
 
 
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2 1
1

12

1

  T(r) ln

ln

T T r
T

RR

R

−
= +

 
 
 

                                                                                                        (2.22) 

So, the rate of heat transfer is: 

2 1

2

1

1
  

ln

r r

dT T T
A A

dr rR

R

  
−  

= − = −  
   
 
 

                                                                                         (2.23) 

where   2rA rL=  

Therefore 1 2

2

1

  2

ln

T T
L

R

R

 
−

=
 
 
 

                                                                                                 (2.24) 

The thermal resistance in this case is: 2
th

1

1
  R ln

2

R

L R

 
=  

 
                                                   (2.25) 

Multi-layered cylinders and spheres 

For three cylindrical resistances in series (figure 2.5) 

1 2 3R R R Rth eq th th th− = + +                                                                                                             (2.26) 

Where 
( ) ( ) ( )2 1 3 2 4 3

1 2 3

1 2 3

ln / ln / ln /
R , R , R

2 2 2
th th th

R R R R R R

L L L     
= = =                                             (2.27) 
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Figure 2.5: The thermal resistance network for heat transfer through a composite cylinder. 

The rate of heat transfer is: 

1 2 2 3 3 4 1 4 1 4

1 2 3 1 2 3th th th th th th th eq

T T T T T T T T T T

R R R R R R R


−

        − − − − −
= = = = =           + +         

                                 (2.28)  

Combining the convection (internal and external) conditions, We obtain: 

1 1 2 2

1 1
R , Rth in th out

h D L h D L 
− −= =                                                                                   (2.29) 

Then 1 2

1 2 3th in th th th th out

T T

R R R R R
  

− − − − −

 −
=  

+ + + + 
                                                                (2.30) 
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Radial heat conduction through a sphere . 

Consider a quarter spherical section represented in figure 2.6. 

 

 

 

 

Figure 2.6. Radial heat conduction-hollow sphere. 

The heat equation in this case is expressed by: 

2

2

1
0

T
r

r r r

  
= 

  
                                                                                                                    (2.31) 

Hence 2 1
1 2
 Or 

T dT C
r C

r dr r


= =


                                                                                                (2.32) 

Integrating this equation, we obtain: 1
2        

C
T C

r
= − +                                                          (2.33) 

For the boundary condition: ( ) ( )1 1 2 2 and T r R T T r R T= = = = ,we get:  

    

1
1 2

1

1
2 2

2

       

 

C
T C

R

C
T C

R


= − +



 = − +


                                                                                                              (2.34) 

Therefore : 

 1 2
1 2 1 1

2 1

2 1

1 1
 Or  

1 1

T T
T T C C

R R

R R

  −
− = − = 

  −

                                                     (2.35) 
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                And ,  1 1 2
2 1 1

1 1

2 1

1
=T +

1 1

C T T
C T

R R

R R

−
= +

−

                                                               (2.36) 

Substituting in equation (2.33), we obtain: 

1 2 1 2

2 1 2 1

1 1
1

1 1 1 1 1

T T T T
T T

r R

R R R R

− −
= − + +

− −

                                                                                  (2.37)                                                                                                                                                                                           

The thermal resistance in this case is: 
1 2

1 1 1

4 R R

 
− 

 
 .                                                   (2.38) 

Conduction through composite sphere 

For three spherical resistances in series (figure 2.7) 

 

 

 

 

 

Figure 2.7: Conduction through composite sphere 

1 2 3R R R Rth eq th th th− = + +                                                                                                    (2.39) 

Where 2 3 3 41 2

1 2 3

1 1 1 11 1

R , R , R
4 4 4

th th th

R R R RR R

  

    
− −−     

     = = =                                          (2.40) 
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The rate of heat conduction in this case is given by : 

1 2 2 3 3 4 1 4

1 2 3th th th th eq

T T T T T T T T

R R R R


−

      − − − −
= = = =         
       

                                                            (2.41) 

1 4 1 4

1 1 2 2 2 3 3 3 4

= 
1 1 1 1 1 1 1 1 1

.
4 4 4

th eq

T T T T

R

R R R R R R



  
−

 
 

− − =
     

− + − + −     
      

                               (2.42) 

Combining the convection (internal and external) conditions, we obtain:  

2 2

1 1 2 2

1 1
R , Rth in th out

h D h D 
− −= =                                                                                    (2.43) 

Then 1 2

1 2 3th in th th th th out

T T

R R R R R
  

− − − − −

 −
=  

+ + + + 
                                                                       (2.44) 

2.4 CONDUCTION WITH INTERNAL ENERGY GENERATION  

Many applications in the field of heat transfer involve internal heat generation, such as in 

electrical conductors, nuclear reactors, and chemical processes. In this study, we focus on one-

dimensional systems, where the temperature distribution varies as a function of a single spatial 

coordinate. 

A. Steady state radial heat conduction in plan wall 

Consider a plane wall of thickness 2L, as illustrated in figure 2.8, with large dimensions in 

the other directions. This geometric configuration justifies the assumption of one-dimensional heat 

transfer along the x-axis. The wall is subject to a uniform internal heat generation rate per unit 

volume q
•

, and its thermal conductivity 𝜆  is assumed to be constant throughout the material. 
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Figure 2.8: One-dimensional conduction problem with heat generation. 

The differential equation that governs the temperature distribution is: 

                 
2

2
0

d T q

d x 

•

+ =                                                                                                             (2.45) 

For the boundary conditions, we specify the temperatures on either side of the wall, i.e., 

                                   at x= LwT T=                                                                                      (2.46) 

The general solution of equation (2.45) is 

                ( ) 2

1 2
2

q
T x x C x C



•

= − + +                                                                                        (2.47) 

Since the temperature is equal on both surfaces of the wall, the constant of integration C1 

must be zero 1 0C = . The temperature at the wall's midplane (x=0) is defined by T0. According to 

equation (2.47), we can obtain 2 0C T=  

The temperature distribution is therefore. 
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                  ( ) 2

0
2

q
T x T x



•

− = −                                                                                             (2.48.a) 

     For x=L, we have: ( ) 2

0
2

w

q
T x L T T L



•

= = = −                                                               (2.48.b) 

Therefore: 

              

2

0

0w

T T x

T T L

−  
=  

−  
                                                                                             (2.48.c) 

    This parabolic temperature distribution allows us to determine the midplane temperature, 

T0, by applying the principle of energy conservation. At steady state, the total rate of heat 

generation within the wall must be equal to the total rate of heat loss from its surfaces.  

Consequently:    2 2
L

dT
A AL q

dx


•

− =                                                                               (2.49) 

Where A is the cross-sectional area of the plate. The temperature gradient at the wall is 

obtained by differentiating equation (2.48.c): 

            ( ) ( )0 02

2 2
w w

L x L

dT x
T T T T

dx L L=

= − = −                                                                            (2.50) 

Then     ( )0

2
wT T q L

L


•

− − =                                                                                              (2.51) 

   So                             
2

0
2

w

q
T T L



•

= +                                                                              (2.52) 

The equation for the temperature distribution could also be written in the alternative form  
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2

0

1w

w

T T x

T T L

−  
= − 

−  
                                                                                                                     (2.53) 

B. Steady state radial heat conduction in cylinder with heat generation  

Let's consider a cylinder of radius R undergoing to uniform heat generation q
•

 and having a 

thermal conductivity λ. Its outer surface is exposed to convection characterized by h and T∞ 

 To analyze the heat transfer, we perform an energy balance on a small annular volume 

within the cylinder, located between radius r and r+dr, considering a unit length of 1 m. This 

balance is expressed as: 

 heat conducted inlet + heat generated – heat conducted outlet =0 

Therefore 0
d dT q

r r
dr dr 

•

 
+ = 

 
                                                                                    (2.54) 

Integrating after separating variables  

1

2

1 2

2

( ) ln
4

CdT q
r

dr r

q
T r r C r C





•

•

= − +

= − + +

                                                                                                    (2.55) 

This represents the general solution to the cylindrical problem with 

the heat source. The values of the constants C1 and C2 are determined 

by applying the appropriate boundary conditions. 

For solid cylinder: The boundary conditions are: 
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At 0, 0           

At ,           w

dT
r

dr

r R T T

= =

= =
                                                                                (2.56) 

The first condition yields: 1 0C =                                                                                           (2.57.a) 

The second condition yields: 2

2
4

w

q
C T R



•

= +                                                                 (2.57.b) 

Therefore  ( )2 2

4
w

q
T T R r



•

− = −                                                                                      (2.58) 

The maximum temperature, Tmax is obtained for r=0, it is equal to: 

       2

max
4

w

q
T T R



•

− =                                                                                                                (2.59) 

Therefore   ( )
2

max

1 /w

w

T T
r R

T T

−
= −

−
                                                                                               (2.60) 

The temperature distribution within the cylinder varies parabolically with the radius . 

Taking convection into account, heat generation unit length is 
2. .1q R

•

 

This is absorbed by the fluid in the outside area 2 .1R  

Equation (2.58) reduces to ( )2 2

4 2

q q R
T T R r

h

• •

− = − +                                                     (2.61) 

Equation (2.59) reduces to 
2

max
4 2

q q R
T T R

h

• •

= + +                                                         (2.62) 
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C. Radial conduction in sphere with heat generation   

Applying the energy equation to a thin layer of thickness dr positioned at radius r, we obtain: 

2 2 2 24 4 4 4 0
dT dT d dT

r r q dr r r dr
dr dr dr dr

   
•  

− + + + = 
 

 

2
2 0

d dT q r
r

dr dr 

•

 
+ = 

 
                                                    (2.63) 

Integrating this equation gives :   

      

1

23

At 0,   0

CdT q
r

dr r

dT
r

dr



•

= − +

= =

                                                                                                              (2.64) 

Hence:     3

1 0
3

q
C r



•

= =                                                                                                    (2.65) 

Therefore  

2

2
6

At : w

q
T r C

r R T T



•

= − +

= =

                                                                                                                       (2.66) 

Thus 2

2
6

w

q
C T R



•

= +                                                                                                                (2.67) 

Hence: ( )2 2

6
w

q
T T R r



•

− = −                                                                                                   (2.68) 

The maximum temperature is calculated  for  r=0 



 

49 
 

2

0 max
6

w w

q
T T T T R



•

− = − =                                                                                                        (2.69) 

Therefore  

( )
2

max

1 /w

w

T T
r R

T T

−
= −

−
                                                                                                              (2.70) 

Therefore ( )
20

0 0

1 /w

w w

T T T T
r R

T T T T

− −
− = =

− −
                                                                                     (2.71) 

Considering convection, the energy balance at the outside is .    

( )3 24
4

3
wR q R h T T 

•

= −                                                                                                       (2.72) 

3
w

q R
T T

h

•

= +                                                                                                                            (2.73) 

The equation (2.52) can be written as: 

( )2 2

6 3

q R q
T T R r

h

• •

− = − +  ….                                                                                               (2.74) 

The equation (2.74) can be written as 

2

max
6 3

q R q R
T T

h

• •

− = +                                                                                                               (2.75) 

Equation 2.70 shows that the temperature distribution is parabolic. The rate of heat transfer 

at any cross-section can be determined using: 

         
dT

A
dr

 = −                                                                                                                     (2.76) 
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2.5 EXTENDED SURFACES (FINS) . 

Extended surfaces, or fins, are used to improve heat transfer by increasing the surface area 

available for conduction and convection. They are widely used in applications requiring efficient 

heat dissipation, including heat exchangers, radiators, and electronic cooling systems. 

 

Figure 2.9. Schematic of different types of fins. 

2.6 GENERAL THERMAL ANALYSIS  

The heat transfer analysis of extended surfaces in the simplified configuration (figure 2.10) 

assumes a uniform cross-sectional area along the direction of heat transfer. A fin is used to increase 

the surface area for heat dissipation from a primary surface to the surrounding fluid. Heat is 

transferred by conduction from the base into the fin and is then dissipated to the surrounding fluid 

by convection from the fin's exposed surface. Under steady-state conditions, the energy balance 

for the fin is expressed as : 
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Figure. 2.10. Pin fin 

Heat conducted into the fin at its base- Heat convected from the fin surface up to a specific      

section x=Heat conducted out of that section x into the rest of the fin material. 

The primary quantities we need to determine are: 

(i) the temperature distribution  

 (ii) the total heat transfer rate. 

This process shows that both temperature and heat flux change continuously along the length 

of an extended surface (fin). The main goal of analyzing a fin is to determine two primary 

quantities: Temperature distribution along the length and total heat transfer rate. 

        The parameters taken into account in the analysis are : T∞ the fluid temperature, Tb the base 

temperature, λ thermal conductivity of the material, (which is considered as constant), h 

Convective heat transfer coefficient, A the sectional area perpendicular to the heat flow direction,   

P perimeter exposed to the fluid, direction of convection. 
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       To analyze the temperature distribution of a fin, we consider a small, infinitesimal control 

volume of length dx at a distance x from the base as illustrated in Figure 2.6. Applying the principle 

of energy balance for steady-state conditions, we find that the rate of energy entering the control 

volume must equal the rate of energy leaving it. 

Rate of heat conduction into the element at section x - the rate of heat conduction out of the element 

at section x + dx -the rate of heat convection from the element's surface = 0. 

       ( ) 0                
dT dT d dT

A A A dx hPdx T T
dx dx dx dx

   

  
− − + − − − =  

  
                            (2.77) 

We assume that the thermal conductivity (λ) and cross-sectional area (A) remain constant, 

and that the convective surface area of the element is P.dx . 

              ( )
2

2
0                

d T hP
T T

dx A
− − =                                                                                (2.78) 

In order to solve the equation, two new variables θ and m are introduced. 

     ( )
2 2

2 2
  So, =               

d T d
T T

dx dx


 = −                                                                             (2.79) 

                            
hP

m
A

=                                                                                                     (2.80) 

The equation reduces to     

2
2

2
0                

d
m

dx


− =                                                                   (2.81) 

The general solution for this equation is 

1 2 +             mx mxC e C e −=                                                                                                (2.82) 
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The values of the constants C1 and C2 are determined by the applied boundary conditions. 

There are four distinct sets of boundary conditions we can consider, and each set yields a unique 

pair of values for C1 and C2. 

Case 1: Long fin configuration:  

The boundary conditions are: 

, 0  and for 0, bx x T T  → = = = −  

Thus 1 2 +             mx mxC e C e −=                                                                                              (2.83) 

From first boundary condition, C1= 0, otherwise θ will become infinite which is not possible. 

2             mxC e −=  

0, bx T T = = −  

0

2 2

m

bT T C e C−

− = =  so      2 0bC T T = − =                                                                           (2.84) 

0

mx

b

T T
e

T T





−



−
= =

−
                                                                                                                    (2.85 

In this case the variation of temperature is exponential. 

Case 2.Short fin end insulated: 

0At 0, ,At , 0b

d
x T T x L

dx


  = = = − = =  as the surface is insulated. 

From the first condition ( )1 2  mx mxC e C e −= + leads to  
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0 1 2

        

C C = +
                                                                                                                            (2.86.a) 

( )1 2  0  mL mL

L

d
m C e C e

dx

 −= − + =                                                                               (2.86.b) 

2

1 2 2 1 =  Or  =  mL mL mLC e C e C C e−                                                                                    (2.86.c) 

Using equations (2.70.a)and (2.70.c)      2 0
0 1 1 1 2

 Or     
1

mL

mL
C C e C

e


 = + =

+
                     (2.87.a) 

Using equation (2.70.c) and (2.71.a) 20 0
2 2 2

 
1 1

mL

mL mL
C e

e e

 
−

= =
+ +

                                    (2.87.b) 

( ) ( )

2 2

0 1 1

=                                  

mx mx

mL mL

m L x m L xmx mL mx mL

mL mL mL mL mL mL

e e

e e

e e e e e e

e e e e e e





−

−

− − −− −

− − −

= +
+ +

= +
+ + +

                                               (2.88) 

( )

( )

cosh

coshb

m L xT T

T T mL





− −  
=

−
                                                                                                      (2.89) 

Here, we are neglecting heat loss by convection from the fin tip. To mitigate the resulting 

error, the fin length can be effectively increased by / 2L e = Δ, where e is the fin's thickness. For 

fins with a circular cross-section, this correction becomes / 4L D = . 

The temperature ratio at the extremity is :  

( )0

1

cosh

LT T

T T mL





−
=

−
                                                                                                                (2.90) 

Case 3. Short fin with convection, hL at the tip. 

The boundary conditions are 
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( )0At 0, ,At , L L

dT
x x L h T T

dx
   = = = − = −  

The calculation is more complex. The resulting equation is:

( )( ) ( )( )

( ) ( )

cosh sinh
.

cosh sinh
.

L

Lb

h
m L x m L x

T T m
hT T

mL mL
m









− + −
−

=
−

+

                                                                   (2.91) 

At the tip, the temperature ratio is: 

( ) ( )

1

cosh sinh
.

L

Lb

T T

hT T
mL mL

m 





−
=

−
+

                                                                                      (2.92) 

Case 4 Specified end temperatures  

At 10, bx T T = = − where Tb1 is the temperature at end 1 

At 2, bx L T T = = − where Tb2 is the temperature at end 2 

In this case,.the resulting solution is : 

( ) ( ) ( ) ( )( )
( )

2 1

1

/ sinh sinh

sinh

b b

b

T T T T mx m L xT T

T T mL

 



− − + − −  
=

−
                                                (2.93) 

Table 2.1 presents these boundary conditions along with the resulting temperature distribution for 

each case. 
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Table 2.1 Temperature distribution in constant area fins for different boundary conditions 

/m hp A= . 

Boundary condition and 

general nomenclature 

Temperature distribution 

1.Long fin 

00,x T T = = −  

( ) ( )/ mx

bT T T T e−

 − − =  

2.Short fin end insulated 

0,

, 0

bx T T

d
x L

dx





= = −

= =
 

( )

( )

cosh

coshb

m L xT T

T T mL





− −  
=

−
 

3.Short fin (convection at the 

tip h, considered) 

( )

0,

,

b

L

L

x T T

dT
x L h T T

dx









= = −

= − = −
 

( )( ) ( )( )

( ) ( )

cosh sinh
.

cosh sinh
.

L

Lb

h
m L x m L x

T T m
hT T

mL mL
m









− + −
−

=
−

+

 

4.Fixed end temperature 

01

02

0,

0,

x T T

x T T









= = −

= = −
 

( ) ( ) ( ) ( )( )
( )

2 1

1

/ sinh sinh

sinh

b b

b

T T T T mx m L xT T

T T mL

 



− − + − −  
=

−
 

2.7. PERFORMANCE OF FINS 

Heat Transfer Rate from a Fin  

The general expression for heat transfer from a fin depends significantly on the tip boundary 

condition. For the common case where the fin tip is insulated (i.e., no heat loss from the tip), or if 

the fin is long enough that the tip temperature is nearly equal to the ambient temperature 𝑇∞, the 

heat transfer from the fin is given by . 

                       ( ) ( ). tanhfin bQ h P A T T mL = −                                                                           (2.94) 

For an infinitely long fin:  

                      ( ).  fin bQ h P A T T = −                                                                                                 (2.95) 
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Fin Effectiveness 

Fin effectiveness fin measures a fin's ability to enhance heat transfer by comparing the heat 

transferred from the fin to the heat that would be transferred from the same area if there were no 

fin.  

Actual heat transfer rate from the fin

Heat transfer rate from the base area if  no fin was present
fin =                                      (2.96) 

Fin Efficiency  

Fin efficiency is defined as the ratio of the actual heat transferred by a fin to the maximum 

possible heat transfer if the entire fin surface were at the base temperature (Tb). Mathematically, it 

is expressed as : 

b

Actual heat transfer rate from the fin

Ideal heat transfer rate if entire fin was  at 
fin

T
 =                                                         (2.97) 

Therefore 

( )

 

.  

fin

fin

fin b

Q

h A T T




=
−

                                                                                                      (2.98) 
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EXERCISES 

EXERCISE 2.1 

A boiler furnace with vertical walls measuring 4m x3m (total height 3m) is constructed with a 

three-layer composite wall. The wall layers, starting from the interior, are: 

     -Fire Brick: Thickness L1 of 25 cm and thermal conductivity λ1 of 0.4 [W/(m. K)] 

     -Ceramic Blanket Insulation: L2 of 8 cm and thermal conductivity λ2 of 0.2 [W/(m. K)] 

     -Steel Protective Layer: L3 of 2 mm and thermal conductivity λ3 of 55 [W/ (m. K)]. 

The temperature of the interior surface of the fire brick is measured at 600°C, and the 

temperature at the outer surface of the ceramic blanket insulation is 60°C. 

1°/Determine the total heat loss rate through the vertical walls of the furnace. 

2°/Determine the temperature at the interface between the fire brick and the ceramic blanket 

insulation. 

Data: Area of rectangular wall is 2. 12 ,l b m =    

     

 

( )

 

( )

 

( )

   

1

1

2

2

3

3

1 2

4 , 3 , 3

25
For Fire brick , 

0,4 / .

0,2
for Steel

54 / .

8
For insulation

0,2 / .

600 and 60

l m b m h m

L cm

W m K

L cm

W m K

L cm

W m K

T C T C







= = =

=


=    

=


=    

=


=    

=  = 

 

1°/Determination of heat transfer rate 

We know that, 
th eq

T

R


−


=  
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 Where:  1 4T T T = −  

 

 

 

1 2 3

1
1

1

2
2

2

3
3

3

And 

0,25
0.0521 /

0,4 12

0,08
0.0333 /

0,2 12

0,002
0.0000031 /

54 12

th eq th th th

th

th

th

R R R R

L
R C W

A

L
R C W

A

L
R C W

A







− = + +

= = = 


= = = 


= = = 


 

 

 

 

So  6320,96 W =  

2°/ Determination of the temperature drop across the steel layer (T3-T4) 

3 4

3

3 4 3.

           =6320,96(0,0000031)

th

th

T T

R

T T R





−
=

− =  

Thus  3 4  =0,0196°CT T−  

EXERCISE 2.2 

A composite wall, detailed in the figure below, is constructed of five materials (A, B, C, D, 

and E). Sections B and C are arranged in parallel, while sections A, the B-C combination, D, and 

E are in series.  

 

 

 

1 4

1 2 3

600 60

0,0521 0,0000031 0,0333

th th th

T T

R R R




−
=

+ +

−
=

+ +
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The thermal conductivities and cross-sectional areas for each section are given in the flowing 

table: 

 

If the temperature entering at wall A is 800°C and leaving at wall E is 100 °C. 

1.Calculate the heat transfer through the composite wall. 

Solution 

800  and 100i oT C T C=  =   

Solution 

We know that: 

( )

1

overall

th

A
th thA

A A

T
Q

R

L
R R

A


=

= =


 

The walls B and C are in parallel Then, 
2

1 1 1 thB thC

th thB thC thB thC

R R

R R R R R

+
= + =  

2

3

4

,Where   thB thC B C
th thB thC

thB thC B B C C

D
th thD

D D

E
th thE

E E

R R L L
R R and R

R R A A

L
R R

A

L
R R

A

 





= = =
+

= =

= =

 

( )1

1
0,02 /

50 1
th thAR R K W= = =


 

Section A B C D E 

Thermal conductivity

 / ( . )W m K  

50 10 6,67 20 30 

Area (m2) 1 0,5 0,5 1 1 
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   

 

 

 

2

3

4

1 1
0,2 /  and 0,2969 /

10 0,5 6,67 0,5

0,2 0,299
0,1198 /

0,2 0,299

1
0,05 /

20 1

1
0,0333 /

30 1

thB thC

thB thC
th

thB thC

D
th thD

D D

E
th thE

E E

R C W R C W

R R
R C W

R R

L
R R C W

A

L
R R C W

A





= =  = = 
 


= = = 

+ +

= = = = 


= = = = 


 

Hence  

 4

1

800 100
3137,61

0,02 0,1198 0,05 0,0333

i o

th

i

T T
W

R



=

− −
= = =

+ + +


 

EXERCISE 2.3 

A hollow cylindrical wall is composed of a material with a thermal conductivity of 70 

W/m.K This cylinder has an inner diameter D1 of 5 cm and an outer diameter D2 of 10 cm. The 

inner surface is maintained at a uniform temperature T1=300K and the outer surface is maintained 

at a temperature T2 of 100 

1.Determine the temperature Tm at the radial location midway between the inner and outer 

surfaces. 

2.Determine the rate of heat transfer per unit length through the cylinder. 

Solution 

    We know that : 1 2

2

1

  2

ln

T T
L

r

r

 
−

=
 
 
 
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 Hence 

( ) ( ) ( )
   

6,28. 1 . 70 300 100
  126868.6 126.86 

5
ln

2,5

W kW
−

= = =
 
 
 

 

At half way between R1 and R2 radius,  
2,5 5

  R 3,75
2

m cm
+

= =  since  remains the same 

under steady state conditions 

( ) ( )1 1 2

2

1 1

  2 2

ln ln

m

m

T T T T
L L

R R

R R

  
− −

= =
   
   
   

 

( ) ( )

( ) ( ) ( )  

1 1 2

2

1 1

1

1 1 2 1

2

1

  

ln ln

3,75
ln ln

2,5
  200 117

5
lnln

2,5

m

m

m

m m

T T T T

R R

R R

R

R
T T T T T T C

R

R

− −
=

   
   
   

   
   
   − = −  − = = 
   

  
  

 

Therefore  

 1 117 183mT T C= − =   

EXERCISE 2.4 

A steel pipe transports steam at an internal temperature of 260 °C. The pipe has an inner 

diameter D1 of 100 mm and a wall thickness e1 of 7 mm. 

The pipe is insulated by two concentric layers: 

1. A primary layer of glass wool with a thickness e2 of 40 mm. 

2. An outer layer of asbestos felt with a thickness e3 of 60 mm. 
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The surrounding ambient air temperature T∞ is 20 °C. 

Thermal Properties are given in the following table  

Parameter Symbol Value Unit 

Inner Convective Heat Transfer Coefficient hin 550 W/m²·K 

Outer Convective Heat Transfer Coefficient hout 15 W/m²·K 

Thermal Conductivity of Steel λsteel 50 W/m·K 

Thermal Conductivity of Glass Wool λglass 0.09 W/m·K 

Thermal Conductivity of Asbestos Felt λasbestos 0.07 W/m·K 

Calculate:  

1/Rate of heat loss per unit length of pipe. 

2/Temperature at each x section of the pipe. 

Solution 

Equivalent electrical circuit is given by : 
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( )
( )
( )

( )

( )
( )
( ) ( )

( )

( )
( )
( )

( )
( )

( )
( ) ( )

 

1 2

2 1 3 2 4 3

1 1 2 4

ln / ln / ln /1 1

2 2 2 22

260 20 2 1

ln 57 / 50 ln 97 / 57 ln 157 / 971000 1000

550 50 50 0,09 0,07 15 157

50,50

s abgw

T T

R R R R R R

h R L L L h R LL

W



   



 −
= =

+ + + +

− 
=

+ + + +

=

( )

1 1

1 1

1

1

2

260
50,5

0,064

T T

h R L

T





 −
=

−
=

 

Hence  ( )1 50,5 0,064 260 256,77T C= − + =    

Now, we have 
( )
( )

( )

( )
2 11 2

2 1

2 1

ln /

ln / 2

2

s

s

R RT T
T T

R R L

L

 




−
=  = −  

Thus  
( )

( )2

ln 57 / 50
256,77 50.5 256.74

100
T C


= − =   

Now, we have for next junction: 

( )

( )

( )

( )
3 22 3

3 2

3 2

ln /

ln / 2

2

gw

gw

R RT T
T T

R R L

L

 




−
=  = −  

( )

( )
 3

ln 97 / 57
256,76 50.5 209,24

0,18
T C


= − =   

Now, we have for next junction 
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( )
( )

( )

( )
4 33 4

4 3

4 3

ln /

ln / 2

2

ab

ab

R RT T
T T

R R L

L

 




−
=  = −  

( )

( )
 4

ln 157 / 97
209,29 50.5 153,92

0,14
T C


= − =   

EXERCISE 2.5 

A hollow copper conductor (D1=13mm and D2=50mm) carries a current density of 5000 

A/cm2. The outer surface is fixed at 40°C, and the inner surface is adiabatic.                                             

Data: ρe = 2.10-6 Ω.cm and λ=381 [W/m.K]   

1.Find the location and magnitude of the maximum internal temperature. 

Solution 

Heat generation rate per unit volume, 

( )
( )

2
42

2
4 8 6 3

5000.10 .
. 5000.10 .2.10 50.10 /

. .

AI R L
q W m

A L A L A

•
−  = = = =    

The differential equation for one-dimensional heatflow with heat generation in cylindrical 

coordinates
.

0
d dT q r

r
dr dr 

•

 
+ = 

 
 is  

Integration of this equation gives 

2

1

.
0

2

dT q r
r C

dr 

•

+ + =  so 1.
0

2

dT q r C

dr r

•

+ + =  

Further integration gives the temperature distribution equation as 
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2

1 2

.
ln 0

4

q r
T C r C



•

+ + + =                                                                                   (*) 

The constants of the integration C1 and C2 are determined from the boundary conditions, 

which are: 

For r=R1 , 0
dT

dr
=  as no heat is removed from the inner surface. 

For r=R2 , 2T T=   

The first boundary condition gives 

 
2

1
1

.

2

q R
C



•

−
=  

Inserting value of constant C1 in the temperature distribution equation, we get 

2 2

1
2

. .
ln 0

4 2

q r q R
T r C

 

• •

−
+ + + =                                  

The second boundary condition give 

2 2

2 1
2 2 2

. .
ln 0

4 2

q R q R
T R C

 

• •

+ − + =  Or 
2 2

1 2
2 2 2

. .
ln

2 4

q R q R
C R T

 

• •

= − −  

N.A: ( )  
2 6

2
31

1

. 50.10
6,5.10 2.772 /

2 2(381)

q R
C C m



•

−− −
= = = −   

           
2 2

1 2
2 2 2

. .
ln 70.82

2 4

q R q R
C R T C

 

• •

= − − = −   
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Substitution of the constant values and other parameters in equation (*) gives 

20.0328 2.772ln 70.82 0T r r+ − − =  

The maximum temperature is at the inner surface (r= 6,5.10-3 m) and is 

( ) ( )
2

3 30.0328 6,5.10 2.772ln 6,5.10 70.82 55,47T C− −= − + + =   

The heat transfer at the outer surface is 

2

.
r R

gradT A 
=

= −  

Therefore  91542 W =  

EXERCISE 2.6 

A hollow spherical shell is constructed from a material with a thermal conductivity λ of 30 

(W/m.K). The sphere has an inner diameter D1 of 12 cm and an outer diameter D2 of 21cm. Heat 

is generated uniformly within the solid material at a rate ($ of 5.106(W/m3) . The inner surface is 

perfectly insulated (adiabatic), and the outer surface temperature is maintained at a constant 

temperature of 360°C 

1.Determine the maximum temperature Tmax achieved within the spherical shell under 

steady-state conditions. 

Solution 

2
2 .

0
d dT q r

r
dr dr 

•

 
+ = 

   
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Integrating this equation twice gives: 

( )
2

1
2

.

6

q r C
T r C

r

•

= − − +
 

At r=R1,the heat flux is zero, therefore . 

 Hence  

At r =R2, T(r=R2) = T2 = 360 °Therefore 

2 3

2 1
2 2

2

. .

6 3

q R q R
C T

R 

• •

= + +

 

So, the temperature distribution is  

( )
2 3 2 3

1 2 1
2

2

. . . .

6 3 6 3

q r q R q R q R
T r T

r R   

• • • •

= − − + + +

 

The maximum temperature is reached at (r= R1=6.10-2 m)  

 
( )max 1 480.54T T r R C= = = 

 

EXERCISE 2.7 

A long cylindrical shaft (60 mm diameter) acts as an extended surface (fin) dissipating heat 

generated by an adjacent bearing. The temperature at the base of the shaft (the shaft end near the 

bearing) is maintained at 60°C above the ambient temperature T∞. The heat is transferred from the 

shaft surface to the surrounding air via convection, with a heat transfer coefficient of 7 [W/m2.K]. 

0
dT

dr
=

1 1

2

1

.
0

3

q R C

R

•

− + =
3

1
1

.

3

q R
C



•

=
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The shaft material has a thermal conductivity of 60 W/(m.K).Assuming the shaft can be modeled 

as an infinitely long fin,  

1.Determine the mathematical expression for the temperature distribution along the shaft's axis. 

2. Determine the total rate of heat transferred from the shaft to the ambient air. 

Solution 

The temperature distribution is given by: 

 Here 
C

hP
m

A
= so 

2

4

4

h D h
m

D D



 


= =  
( )

4 7
A.N  2,79

60 0,06
m


= = and 

60sT T C− = Hence 
2,7960 xT T e−

− =  

The rate of heat rejected from the entire surface area of the shaft is : 

( )fin c shP A T T  = −                        

Or   ( ) ( )  
2

fin 7 0,06 60 / 4 0,06 60 28,39 W  =       = . 

mx

s

T T
e

T T

−



−
=

−
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CHAPTER 3 TWO-DIMENSIONAL STATIONARY CONDUCTION 

3.1 INTRODUCTION  

Two-dimensional heat conduction involves temperature variation in two spatial directions 

and is governed by the 2D heat equation. Analytical solutions are possible for simple geometries 

and boundary conditions using methods like separation of variables. However, complex domains 

often require numerical approaches such as finite difference or finite element methods. 

3.2 ANALYTICAL SOLUTION OF TWO-DIMENSIONAL HEAT CONDUCTION 

PROBLEMS. 

Consider a long rectangular bar (infinite in the z-direction), as illustrated in Figure 3.1. Three 

of its lateral sides are maintained at a constant temperature To. The temperature along the fourth 

side (y=H) is given by an arbitrary function f(x). 

 

 

 

 

 

Figure 3.1 A rectangular section bar with given thermal boundary conditions . 

We know that the equation of heat transfer in steady state without heat generation is 

expressed by: 
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2 2

2 2
=0    

T T

x y

 
+

 
                                                                                                                  (3.1) 

Using 0T T = − , the Laplace equation (3.1), is transformed to: 

                       
2 2

2 2
=0                   

x y

  
+

 
                                                                                   (3.2) 

The boundary conditions are : 

At x 0, 0,At y 0, 0,

At x , 0,At y , ( ),W H f x

 

 

= = = =

= = = =
                                                                                        (3.3) 

The solution of equation (3.2) is obtained by using the separation of variables method, which 

relies on the assumption that the solution can be expressed as a product of functions. This yields: 

                     ( ), .             x y X Y =                                                                                            (3.4) 

Where X=X(x) and Y=Y(y). 

Substitution in equation (3.2) gives 

                       
2 2

2 2

1 1
              

d X d Y

X dx Y dy
− =                                                                                (3.5) 

Because x and y are independent variables, the left-hand side and the right-hand side of 

equation (3.5) are independent of each other. Consequently, for the equation to be true, both sides 

must be equal to a common constant. Let's denote this positive constant as K2. This gives us: 

           
2 2

2

2 2

1 1
              

d X d Y
K

X dx Y dy
− = =                                                                                    (3.6) 



 

72 
 

Thus, we get two ordinary differential equations as: 

                
2

2

2
0              

d X
K X

dx
+ =                                                                                            (3.7) 

              
2

2

2
0         

d Y
K Y

dy
− =        (3.8) 

The value of the constant K is to be determined from the given boundary conditions. 

The general solution of equation (3.7) is 

( ) ( )1 2cos sinX C Kx C Kx= +                                                                                            (3.9) 

and that of equation (3.8) is: 

        ( ) ( )3 4exp expY C Ky C Ky= − +                                                                                      (3.10) 

Substitution in equation (3.4) gives [20]. 

        ( ) ( ) ( ) ( ) ( )1 2 3 4, cos sin exp expx y XY C Kx C Kx C Ky C Ky = = + − +                            (3.11) 

Applying the boundary conditions, we find : 

      At y=0,         ( ) ( ) ( )1 2 3 4cos sin 0 C Kx C Kx C C+ + =                                                     (3.12.a) 

     At x=0,          ( ) ( )1 3 4exp exp 0 C C Ky C Ky− + =                                                         (3.12.b) 

      At x=W,  ( ) ( ) ( ) ( )1 2 3 4cos . sin . exp exp 0 C K W C K W C Ky C Ky+ − + =                       (3.12.c) 

Equations (3.12.a) and (3.12.b) give  
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    3 4 1 and 0      C C C= − =  

Substitution in equation (3.12.c) gives: 

    ( ) ( ) ( )2 4 sin exp exp 0       C C KW Ky Ky− − =                                                                     (3.13) 

Equation (3.13) requires that: 

     ( )sin 0       KW =                                                                                                                (3.14) 

Therefore,         
n

K
W


= , where n is a positive integer. 

By substituting values of constants C1 to  C4 and K in equation (3.11), we get . 

               ( ) 0

1

, sin sinhn

n

n x n y
x y T T C

W W

 




=

   
= − =    

   
                                                         (3.15) 

In this form, the exponential term has been replaced by sinh (nπy/W), and the constants C2 

and C4 have been combined. The complete solution to the differential equation is obtained by 

summing the individual solutions for each value of n, extending to infinity. 

The fourth boundary condition gives 

( )
1

sin sinhn

n

n x n H
f x C

W W

 

=

   
=    

   
                                                                                       (3.16) 

The terms sinhn

n H
C

W

 
 
 

 are identified as the coefficients of the Fourier sine series for the 

function f(x) in the interval 0<x<L. In other words: 
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        ( )
0

2
sinh sin

W

n

n H n x
C f x dx

W W W

    
=   

   
                                                                        (3.17) 

and thus,      

( ) ( )0

1 0

2 1
, sin sin sinh

sinh

W

n

n x n x n y
x y T T f x dx

n HW W W W

W

  






=

 
      
 = − =      

        
    

                (3.18) 

The temperature distribution is represented in figure 3.2. In this figure, the heat flow lines 

(shown as dashed lines) are always perpendicular to the lines of constant temperature, known as 

isotherms (shown as solid lines). 

 

 

 

 

 

 

Figure. 3.2 Isotherms and heat flow lines in a rectangular plate. 

3.3 FINITE DIFFERENCE ANALYSIS OF CONDUCTION 

In modern heat transfer analysis, numerical methods like the finite difference method and 

finite element method are the most common approaches for solving complex conduction problems. 

We'll now introduce the basic concepts of the finite difference method and its application to heat 

conduction. 
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3.4 ENERGY BALANCE METHOD. 

The energy balance method is an alternative and often more intuitive approach to developing 

finite-difference equations, especially for problems involving multiple materials, internal heat 

generation, or complex boundary geometries. 

The key of the finite difference method is applying the conservation of energy principle to a 

control volume surrounding each nodal region to derive its finite-difference equation. To handle 

the uncertainty of heat flow direction, we assume, for the purpose of formulation, that all heat 

transfer is into the control volume associated with a given node (m, n). 

For steady-state problems with heat generation, the energy balance applied is : 

               0g inE E+ =                                                                                                                (3.19) 

We consider two-dimensional steady-state heat conduction problem, the energy balance for 

a control volume enclosing an interior node (m, n) as shown in figure 4.5,  is based on the principle 

of energy conservation. In this case, energy is exchanged through conduction with the four 

adjacent nodes (left, right, top, and bottom) and is balanced by internal heat generation. 

Consequently: 

          ( ) ( )
4

,
1

. .1 0
i m n

i

q x y
•

→
=

+   =                                                                                             (3.20) 
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Figure 4.5 Conduction to an interior node from its adjoining nodes . 

For a unit depth and under the assumption that heat conduction occurs only along paths 

parallel to the x and y axes, the heat conduction rate 
( ),i m n


→

 between a neighboring node i and the 

central node (m, n) can be determined from Fourier's law. 

The rate of heat transfer by conduction from the adjacent node (m−1, n) to node (m, n) is 

given by: 

             
( ) ( ) ( ) 1, ,

1, ,
.1 m n m n

m n m n

T T
y

x
  −

− →

−
= 


                                                                              (3.21) 

In this expression, the area for heat transfer is (Δy⋅1), and the term 
1, ,m n m nT T

x

− −


 is the finite 

difference approximation of the temperature gradient, ∂T/∂x. The remaining conduction rates from 

the other adjacent nodes into the central node (m,n) can be formulated analogously [5]: 

             

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1, ,

1, ,

, 1 ,

, 1 ,

, 1 ,

, 1 ,

.1

.1

.1

m n m n

m n m n

m n m n

m n m n

m n m n

m n m n

T T
y

x

T T
x

y

T T
x

y

 

 

 

+

+ →

+

+ →

−

− →

−
= 



−
= 



−
= 



                                                                              (3.22) 
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When using the finite difference method, heat transfer rates are systematically calculated by 

subtracting the temperature of the central node, Tm,n , from the temperature of its adjacent neighbor. 

This sign convention is a direct consequence of the initial assumption that all heat flow is directed 

into the control volume of node (m, n). By substituting the conduction rate expressions from the 

four adjacent nodes into the energy balance equation and assuming a uniform grid spacing 

x y =  , the governing finite-difference equation for an interior node with heat generation 

becomes: 

( )
2

, 1 , 1 1, 1, ,4 0m n m n m n m n m n

q x
T T T T T



•

+ − + −


+ + + + − =                                                                     (3.23) 

In the absence of internal heat generation 0q
•

= , the derived finite-difference expression for 

an interior node reduces to:  , 1 , 1 1, 1, ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − =  

It's important to remember that a finite-difference equation is required for each node with an 

unknown temperature. For nodes located on insulated or convective surfaces, the finite-difference 

equation must be formulated specifically for that node by directly applying the energy balance 

method.  

To provide a more detailed illustration of the energy balance method, let's analyze the 

specific case of the node located at the internal corner of the geometry shown in figure 4.6. This 

particular node represents the three-quarter shaded area shown and exchanges energy with a 

surrounding fluid at a temperature T∞ through the convection process and with four neighboring 

nodes in the solid material through conduction. This transfer occurs along four distinct pathways.  

Assuming steady-state conditions and uniform grid spacing, the heat transfer rates by conduction 
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 from the four neighboring nodes to the central node (m, n) can be expressed using simplified 

Fourier's law as follows: 

         
( ) ( ) ( ) 1, ,

1, ,
.1 m n m n

m n m n

T T
y

x
  −

− →

−
= 


                                                                                  (3.24) 

 

Figure4.6 : Formulation of the finite-difference equation for an internal corner of a solid 

with surface convection. 

      

( ) ( ) ( )

( ) ( )

( ) ( )

, 1 ,

, 1 ,

1, ,

1, ,

, 1 ,

, 1 ,

.1

.1
2

.1
2

m n m n

m n m n

m n m n

m n m n

m n m n

m n m n

T T
x

y

T Ty

x

T Tx

y

 

 

 

+

+ →

+

+ →

−

− →

−
= 



− 
=  

 

− 
=  

 

                                                                                    (3.25) 

Notice that heat conduction from the full nodes, (m−1, n) and (m, n−1), occurs across the 

full areas of ( ).1y  and ( ).1x , respectively. However, the conduction paths from the partial 

nodes, (m+1, n) and (m, n-1), have widths of only ( )/ 2y  and ( )/ 2x , respectively. Furthermore, 

the node (m, n) also exchanges heat with the surrounding fluid via convection. This occurs over a 

surface area that is effectively a quarter of the full nodal area, or a half-length in both the x and y 

directions. 
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The total convective heat transfer rate conv  is given by : 

                ( ) ( ) ( ) ( ), ,,
.1 .1

2 2
m n m nm n

x y
h T T h T T   →

    
= − + −   

   
                                            (3.26) 

The previous formulation of the energy balance for a corner node relies on the key 

assumption that the exposed surfaces of the corner have a uniform temperature, which is equal to 

the temperature of the node itself, Tm,n 

This approach is consistent with the fundamental concept of the finite difference method, 

where a single temperature value assigned to a node is an approximation. It represents the average 

temperature of the entire nodal region, rather than accounting for the actual, continuous 

temperature variations within that small area. 

Based on the principles of energy conservation and the finite difference method under two-

dimensional, steady-state conditions without internal heat generation, the sum of all heat transfer 

rates into a control volume must equal zero. By combining the heat conduction terms from the four 

adjacent nodes and the convection term from the surrounding fluid for the specific case of an 

internal corner node, and rearranging the equation, we arrive at the following finite-difference 

equation : 

       ( )1, , 1 1, , 1 ,

1
3 0

2
m n m n m n m n m n

h x h x
T T T T T T

 
− + + − 

  
+ + + + − + = 

 
                                         (3.27) 

where the mesh is ( )x y =  . 

Table 3.1 provides a summary of these equations for several common configurations, 

assuming no internal energy generation. 
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Table 3.1: nodal energy balance equations for different configurations. 

Configuration 

 

Finite difference equation for Δx=Δy 

 

 

, 1 , 1 1, 1, ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − =  

 

 

 

 

( )
2

, 1 , 1 1, 1, ,4 0m n m n m n m n m n

q x
T T T T T



•

+ − + −


+ + + + − =  

 

 

 
 

( )1, , 1 , 1 ,2 2 2 2 0m n m n m n m n

h x h x
T T T T T

 
− + − 

  
+ + + − + = 

 
 

 

 

 

   ( ), 1 1, ,2 2 1 0m n m n m n

h x h x
T T T T

 
− − 

  
+ + − + = 

 
 

 

 

    
( )

1, , 1 , 1 ,2 2 4 0m n m n m n m n

q x
T T T T



•

− + −


+ + + − =  

 



 

81 
 

EXERCISES 

 

EXERCISE 3.1 

A hollow square duct of the configuration shown (left) has its surfaces maintained at 200 

and 100 K, respectively. Determine the steady-state heat transfer rate between the hot and cold 

surfaces of this duct.The wall material has a thermal conductivity of 1,21W/m. K 

We may take advantage of the eightfold symmetry of this figure to lay out the simple 

The grid chosen is square with 0,5x y m =  = : Three interior node points are thus 

identified; their temperatures may be determined by proper application of finite difference method 

2
1

1 3
2

2
3

200 100 2

4

200 100

4

100 100 2

4

T
T

T T
T

T
T

+ +
=

+ + +
=

+ +
=
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This set of three equations and three unknowns may be solved quite easily to yield the 

following: 

T1=145.83K, T2=141.67K and T3=120.83K 

The temperatures just obtained may now be used to find heat transfer. Implicit in the 

procedure of laying out a grid of the sort, we have specified is the assumption that heat flows in 

the x and y directions between nodes. On this basis heat transfer occurs from the hot surface to the 

interior only to nodes 1 and 2; heat transfer occurs to the cooler surface from nodes 1, 2, and 3.We 

should also recall that the section of duct that has been analysed is one-eight h of the total thus, of 

the heat transfer to and from node 1, only one half should be properly considered as part of the 

element analysed. 

We now solve for the heat transfer rate from the hotter surface, and write 

( )
( )

( )
( )

1

2

200
200

2

200 145.83
   200 141,67

2

85,415

T
T  





−
= + −

− 
= + − 

 

=

 

A similar accounting for the heat flow from nodes 1, 2, and 3 to the cooler surface is written 

as 

( )
( ) ( )

( )
( ) ( )

1

2 3

100
100 100

2

145.83 100
   141,67 100 120,83 100

2

85,415

T
T T   





−
= + − + −

− 
= + − + − 

 

=
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Observe that these two different means of solving for q yield identical results. This is 

obviously a requirement of the analysis and serves as a check on the formulation and numerical 

work. 

The total heat transfer per meter of duct is calculated as 

( ) ( )
2

8 8, 415 1, 21

826,8 /W m

 =

 =  

 

EXERCISE 3.2 

The figure below illustrates a rectangular fin section of a furnace wall. The fin is assumed to 

be infinitely wide in the z direction, allowing for a two-dimensional heat transfer analysis. The fin 

is exposed to a convection environment characterized by a heat transfer coefficient h= 400 W/(m2. 

K) and an ambient temperature T∞= 25°C 

The thermal conductivity of the fin material is 4 W/ (m K). 

Using a numerical (finite-difference) method, calculate the steady-state temperatures for all 

the interior and boundary nodes shown in the figure. 
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Solution 

Due to the symmetry about the horizontal centerline, there are only 8 different nodal 

conditions.  

Interior nodes (1, 3 and 5) 

At node 1, the heat balance gives 

( ) ( ) ( )1 3 1 2 1
2 0

s

y y x

T T T T T T
A A A

x x y
  

− − −
+ + =

  
 

Where ( ) 3 220 1 .10xA m−  =     for depth =1m 

           ( ) 3 210 1 .10yA m−  =     

            
( )  

( )  

3

3

20 .10

10 .10

x m

y m

−

−

 =

 =
 

Substitution of various values gives 

( ) ( ) ( )1 3 1 2 1
10 10 2 20 0

20 20 10

sT T T T T T
  

− − −
+ +   =  

Or   

( ) ( )
( )1 3 1

2 14 0
2 2

sT T T T
T T

− −
+ + − =

 

Or   1 3 210 8 0sT T T T− − − =  

So the nodal equation is: 1 2 310 8 200 0T T T− − − =          

Similarly, the equation for the nodes 3 and 5 can be written as:  
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3 4 5 1

5 6 7 3

10 8 0

10 8 0

T T T T

T T T T

− − − =

− − − =
     

Nodes 2, 4, and 6: 

These nodes are on the convective boundary. At node 2, the heat balance equation is 

( ) ( ) ( )
( )( )1 2 4 2 2

2.1 0
2 2

y y s

x

A AT T T T T T
A h x T T

y x y
   

− − −
+ + +  − =

  
 

Putting values of , , ,  and , we obtain:x yx y A A h   

( )
( )

( )
( )

( )

( )
( )

( )

( )

( )( ) ( )

1 2 4 2 23 3 3

3 3 3

3

2

4 20 10 4 10 10 4 10 10
10 10 2 20 10 2 20 10

400 20 10 0

sT T T T T T

T T

− − −

− − −

−



− − −
      +  + 
      

 +  − =
 

 

Or ( ) ( ) ( ) ( )1 2 4 2 2 28 8 0sT T T T T T T T− + − + − + − =  

2 1 418 8 8 0sT T T T T− − − − =  

Substituting values of Ts and T∞, the nodal equation is :  

2 1 418 8 400 0T T T− − − =  

Similarly, at node 4, we have: 

4 3 6 218 8 200 0T T T T− − − − =  

And the node 6: 

6 5 8 418 8 200 0T T T T− − − − =  
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Node 8 (the corner node): 

( ) ( ) ( )
( )6 8 7 8

8.1. 0
2 2 2

y x
A T T T T x yA

h T T
x y

  

− −  +
+ + − =

 
 

Then 

( ) ( ) ( )
( )

3

6 8 7 83 3

83 3

20 10 10
4 10 10 4 20 10 400 0

2 20 10 2 10 10 2

T T T T
T T

−

− −

− −

− − +
  +   + − =

   
 

Or         ( ) ( ) ( )6 8 7 8 84 6 0T T T T T T− + − + − =  

Hence      8 7 611 4 150 0T T T− − − =  

Node 7 at the fin end: 

( ) ( )
( )( )5 7 8 7

72 .1 0
2

x
y

T T T TA
A h y T T

x y
  

− −
+ +  − =

 
 

Substitution of various values gives:  

7 8 57 4 50 0T T T− − − =   

The complete set of nodal equations is 

               

1 2 3

2 1 4

3 4 5 1

4 3 6 2

5 6 7 3

6 5 8 4

7 8 5

8 7 6

Node 1: 10 8 200 0

Node 2: 18 8 400 0

Node 3: 10 8 0

Node 4: 18 8 200 0

Node 5: 10 8 0

Node 6: 18 8 200 0

Node 7: 7 4 50 0

Node 8: 11 4 

T T T

T T T

T T T T

T T T T

T T T T

T T T T

T T T

T T T

− − − =

− − − =

− − − =

− − − − =

− − − =

− − − − =

− − − =

− − 150 0− =

 

The above set of equations can be solved by Gaussian elimination of relaxation method. 



 

87 
 

The relaxation method yields  

1 2 9 3 4 10 5

6 11 7 8 12

65.91 , 53.2 , 33.69 , 30.5 , 26.77 ,

26.1 , 25.36 , 25.22 ,

T C T T C T C T T C T C

T T C T C T T C

         = = = = = = =         

     = = = = =     

 

EXERCICE 3.3 

Analyze the steady-state nodal temperatures for the solid section shown in the figure, which 

includes fixed temperature, insulated, and convection boundaries. We Giveλ=1.5 (W/m.K) and 

h=500 (W/m2.K).  

calculate the temperatures at TA, TB and TC and the total heat transfer rate from the surface 

subjected to convection. 

 

 

 

 

 

For node 'A', we have 

1 4 5 7

4

200 200 132.8 137
    160.7

4

A

T T T T
T

C

+ + +
=

+ + +
= = 

 

For node 'B', we have 
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9 8 102

4

129.4 2(103.5) 45.8
    95.6

4

B

T T T
T

C

+ +
=

+ +
= = 

 

For node 'C', we have 

( )

( )

6 8 10

.
0,5( 2 )

.

500. 0,1
0,5(67 2(103) 45,8) 30

1,5
    37,4

500. 0,1
30 2

1,5

C

h x
T T T T

T
h x

T

C










+ + +

=


+ + +

= = 

+

 

Now the heat convected out by the exposed surface is 

( ) ( )

( ) ( ) ( ) ( ) ( )

 

.

. . ,

500 1x0,1 45,8 30 37,4 30 67 30 2 200 30

7258

hA T

h y z T T

W

 = 

=   − 

= − + − + − + −  

=


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CHAPTER 4: VARIABLE REGIME HEAT CONDUCTION 

4.1 INTRODUCTION 

Until now, the heat conduction models discussed have focused exclusively on temperature 

variation as a function of position. However, in many engineering applications, the spatial 

temperature variation within a medium is negligible, allowing temperature to be treated as a 

function of time only. These simplified formulations, known as the lumped system or lumped 

capacitance method, greatly simplify transient heat conduction analysis but their field of 

application is very limited. We will illustrate this approach and examine its validity based on Biot 

dimensionless number. 

4.1 SYSTEMS WITH NEGLIGIBLE INTERNAL RESISTANCE . 

Lumped and partially lumped formulation  

Let's analyze a small solid composed of a material with 

high thermal conductivity, Initially, this solid has a uniform 

temperature T0. It is then suddenly immersed into a hot fluid bath 

that is well-stirred and maintained at a uniform temperature T∞. 

This solid has a volume V, a specific heat Cp. and a                           Figure 4.1: Heating of a metal 

a density ρ a surface area A through which heat can be exchanged (Figure 4.1)                                                                     

The heat transfer between the object's surface and the surrounding fluid is characterized by 

the convection heat transfer coefficient h. Because the solid is small and highly conductive, we 

can assume that the temperature within it remains essentially uniform throughout at any given 

time, meaning the temperature T is only a function of time T(t). By considering the entire solid  



 

90 
 

object as our control volume, the principle of energy conservation can be expressed as : 

(Rate of heat flow from the solid through its boundaries) = (Rate of change of the internal energy 

of the solid)                                                                                                                     (4.1)                                                                                                               

When heat transfer to or from the control volume occurs only via convection, the energy equation 

is expressed by: 

 ( )p

dT
VC hA T t T

dt
 = − −                                                                                                         (4.2) 

which is rearranged to yield 

 ( ) 0     for   0
p

dT hA
T t T t

dt VC
+ − =                                                                              (4.3) 

Initial condition:                   0( 0)T t T= =                                                                                    (4.4) 

Equation (4.3) is a nonhomogeneous ordinary differential equation that can be solved by 

finding the sum of its homogeneous and particular solutions. Nevertheless, to simplify the 

equation, it is useful to define the temperature θ (t) as follows: 

( ) ( )                t T t T = −                                                                                                  (4.5) 

With this substitution, the lumped formulation becomes:  

( )
( )

( ) 0 0

1
. 0   for t >0   

0      

d t
t

dt b

t T T




 

+ =

= = − =

                                                                                                 (4.6) 

Where  
pVC

b
hA


=                                                                                                                          (4.7) 
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The solution of equations (4.6) is : 

( ) 0

t

bt e 
−

=                                                                                                                                 (4.8) 

This equation provides a very simple way to determine the temperature of the solid at any 

given time. It's important to note that the parameter b  in this equation has units of seconds (s), 

which is known as the thermal time constant of the system.  

This term represents the product of the heat capacity multiplied by the convective thermal 

resistance. Consequently, if either the heat capacity or the convective resistance (or both) is 

smaller, the value of b will be larger, and equation (4.8) shows that the solid temperature θ(t) will 

change more rapidly. 

Temperature evolution of this system is presented in figure 4.2. 

 

 

 

 

Figure 4.2: Evolution of temperature 

To determine the applicability criterion for transient heat conduction analysis, we will 

introduce the definition of the Biot number which is given by the following form : 

               
/ internal conductive resistance

1/ external convective resistance

c c s

s

hL L A
Bi

hA




= = =                                              (4.9) 
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Where s  is the thermal conductivity of the solid. Lc is the characteristic length of the solid 

,it is generally defined as Lc =V/A. 

The lumped system analysis is a simplification used in transient heat transfer problems. It 

relies on the assumption that the temperature within a solid body remains sufficiently uniform 

during the heat transfer process. 

This assumption is valid when the thermal resistance within the body is negligible compared 

to the thermal resistance at its surface. This condition is checked using Biot number (Bi). 

Referring to the Biot number definition, a small Biot number (significantly less than one, 

like an order of magnitude smaller) indicates this condition. Consequently, the lumped system 

analysis is valid only for small values of the Biot numbers, specifically [21]: 

               0.1c

s

hL
Bi


=     (Lumped analysis criterion)                                                            (4.10) 

Equation (4.10) presents a valuable criterion for applying lumped analysis. However, for 

transient problems, however, the reduction of spatial temperature gradients is a gradual process 

that happens as the Biot number decreases. Therefore, we shouldn't view a Biot number of 0.1 as 

a strict limit for the existence or absence of these gradients. Instead, it's a practical criterion for 

satisfying the condition Bi≪1. This is supported by precise analytical solutions for transient heat 

transfer in walls, cylinders, and spheres with convective cooling, which show that internal 

temperature differences stay below roughly 5% when the Biot number is less than 0.1. 

Therefore, in numerous engineering applications, lumped system analysis is generally 

acceptable when the Biot number is approximately less than 0.1. To a better understand the 
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transient temperature distribution, figure 4.3 illustrates the temperature profiles for a symmetric 

plane wall. This wall, initially at a uniform temperature T0 , undergoes convective cooling on both 

surfaces by a fluid at a temperature of T∞ . This figure examines three different Biot number: 

Bi≪1, Bi≈1, and Bi≫1. When the Biot number is significantly less than 1 (Bi≪1), as shown in 

Figure 4.3.a, the plane wall undergoes a uniform temperature decrease from the initial value T0 

towards the steady-state fluid temperature T∞ .  

This behavior is typical of situations where the resistance to heat transfer at the surface 

(convective resistance) is significantly greater than the resistance to heat transfer within the wall 

(conductive resistance). This dynamic leads to a uniform temperature throughout the wall at any 

given moment, meaning the temperature is a function of time alone, T=T(t). 

Figure 4.3.b illustrates the intermediate case where Bi ≈ 1. Here, the conductive resistance 

within the wall and the convective resistance at the surface are comparable, leading to the 

variations of temperature across the wall's thickness and a temperature difference between the wall 

and the fluid. 

Finally, figure 4.3.c illustrates the case where Bi is much greater than 1 (Bi≫1). In the 

limiting scenario, this approaches an infinitely large convection coefficient (h→∞), which 

effectively imposes a fixed surface temperature. In this regime, spatial temperature gradients are 

the dominant factor. Specifically, the gradient is exceptionally steep near the surfaces at t=0. 
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Figure 4.3:  Temperature distribution T(x,t)for a symmetric plane wall cooled by 

convection heat transfer for various Biot numbers . 

4.2 UNSTEADY-STATE CONDUCTION IN INFINITE MEDIUM. 

Tabulated solutions 

In this section, we will introduce solutions to unsteady-state 

(or transient) problems, where temperature changes with time. 

We Consider a semi-infinite solid that occupies the space 

x≥0, the entire solid is at a uniform temperature, T0. At time t=0, 

the surface at x=0 is instantaneously and permanently changed to 

a new constant temperature T s.  
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We assume that the temperature is uniform across the y and z directions at all times, meaning 

that heat transfer occurs only along the x-axis. This one-dimensional heat flow scenario can be 

mathematically represented by considering the solid to extend infinitely in both the positive and 

negative y and z directions.  

When the surface temperature of a solid, Ts, is higher than its initial uniform temperature, 

T0, heat will diffuse into the material. This causes the temperature at any point within the solid to 

increase over time. Consequently, the temperature T, is a function of both position (x) and time 

(t), making it an unsteady-state (or transient) heat transfer problem. The primary objective is to 

find this temperature distribution T(x, t). 

When internal heat generation is negligible and the thermal conductivity is constant, the heat 

conduction equation simplifies to the form :  

              

2

2

1T T

x t

 
=

 
                                                                                                               (4.11) 

The boundary conditions are: 

              

0

0

 0,   for all 0

 0,   for all t 0

 ,   for all t 0

s

At t T T x

At x T T

As x T T

− = = 

− = =

− → → 

                                                                               (4.12) 

This final condition is physically intuitive: heat requires an infinite amount of time to 

propagate through an infinitely large distance within the solid. 

We can solve equation (4.11) with these boundary conditions using the method of 

combination of variables, yielding the following result: 
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( )

0

,

2

s

s

T x t T x
erf

T T t

−  
=  

−  
                                                                                      (4.13)   

The error function, erf, is defined by: 

                 
2

2

0

2

2

x

t

zx
erf e dz

t



 

− 
= 

 
                                                                                   (4.14) 

This function is used in various engineering and applied science applications, it can be 

evaluated through numerical integration. Its computed values are provided in Table 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

* 
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Table 4.1: The error function. 

X erf x X erf x X erf x 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.16 

0.18 

0.20 

0.22 

0.24 

0.26 

0.28 

0.30 

0.32 

0.34 

036 

0.38 

0.40 

0.42 

0.44 

0.46 

0.48 

0.50 

0.52 

0.54 

0.56 

0.58 

0.60 

0.62 

0.64 

0.66 

0.68 

0.70 

0.72 

0.74 

 

0.00000 

0.02256 

0.04511 

0.06762 

0.09008 

0.11246 

0.13476 

0.15695 

0.17907 

0.20094 

0.22270 

0.24430 

0.26570 

0.28690 

0.30788 

0.32863 

0.34913 

0.36936 

0.38933 

0.40901 

0.42839 

0.44749 

0.46622 

0.48466 

0.50275 

0.52050 

0.5379 

0.55494 

0.57162 

0.58792 

0.60386 

0.61941 

0.63465 

0.64938 

0.66278 

0.67780 

0.69143 

0.70468 

0.76 

0.78 

0.80 

0.82 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

1.00 

1.02 

1.04 

1.06 

1.08 

1.10 

1.12 

1.14 

1.16 

1.18 

1.20 

1.22 

1.24 

1.26 

1.28 

1.30 

1.32 

1.34 

1.36 

1.38 

1.40 

1.42 

1.44 

1.46 

1.48 

1.50 

0.71754 

0.73001 

0.74210 

0.75381 

0.76514 

0.77610 

0.78669 

0.79691 

0.80677 

0.81627 

0.82542 

0.83423 

0.84270 

0.85084 

0.85865 

0.86614 

0.87333 

0.88020 

0.88079 

0.89308 

0.89910 

0.90484 

0.91031 

0.91553 

0.92050 

0.92524 

0.92973 

0.93401 

0.93806 

0.94191 

0.94556 

0.94902 

0.95228 

0.95538 

0.95830 

0.96105 

0.96365 

0.96610 

 

1.52 

1.54 

1.56 

1.58 

1.60 

1.62 

1.64 

1.66 

1.68 

1.70 

1.72 

1.74 

1.76 

1.78 

1.80 

1.82 

1.84 

1.86 

1.88 

1.90 

1.92 

1.94 

1.96 

1.98 

2.00 

2.10 

2.20 

2.30 

2.40 

2.50 

2.60 

2.70 

2.80 

2.90 

3.00 

3.20 

3.40 

3.60 

0.96841 

0.97059 

0.97263 

0.97455 

0.97635 

0.97804 

0.97962 

0.98110 

0.98249 

0.98379 

0.98500 

0.98613 

0.98719 

0.98817 

0.98909 

0.98994 

0.99070 

0.99147 

0.99216 

0.99279 

0.99338 

0.99392 

0.99443 

0.99489 

0.995322 

0.997020 

0.998137 

0.998857 

0.999311 

0.999593 

0.999764 

0.999866 

0.999925 

0.999959 

0.999978 

0.999994 

0.999998 

1.000000 
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The heat flux is given by:                              
( )

( )0 2exp / 4
s

x

T T
x t

t


 



−
= −                          (4.15) 

The total amount of heat transferred per unit area across the surface at x = 0 over time t is given 

by the following equation: 

               ( )02 s

Q t
T T

A



= −                                                                                                (4.16) 

The concept of a semi-infinite solid is a valuable simplification used to solve complex heat 

transfer problems in various practical situations. For instance, the Earth can be effectively modeled 

as a semi-infinite solid. 

A solid of any actual thickness can be accurately modeled as a semi-infinite solid  provided 

that the duration of heat transfer is brief enough that the thermal disturbance, or penetration depth, 

affects only a small portion of the object near its surface. This simplification is highly valuable 

because it allows for the analysis of transient heat transfer problems without needing to consider 

the object's full dimensions. Despite its seemingly abstract nature, the semi-infinite solid concept 

is a powerful tool with numerous applications in engineering and science. 

The acceptability of this approximation is usually determined by the following inequality: 

                      
2

0.1
t

L


                                                                                                               (4.17) 

    Where L is the thickness of the solid. The dimensionless group 2/t L  is called the Fourier 

number and is designated as Fo or  . 
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4.3 VARIABLE SEPARATION METHOD IN FINITE MEDUIM  

We consider a rod of length 2L that is initially at a uniform temperature T0 . At time t=0, the 

temperatures at both ends of the rod, at x=0 and x=2L, are suddenly changed and held constant at 

a new temperature T1, as shown in figure 4.4 . 

 

Figure 4.4: rod study . 

The governing differential equation of this problem is : 

           

2

2 p

T T
C

x t
 
 

=
 

                                                                                                           (4.18) 

The form of this equation shows that it is a linear differential equation of second order in space x 

and first order in time t. 

We reformulate this equation by putting 
pC





=  and 1T T = −  , we obtain :  

             

2

2

1

x t

 



 
=

 
                                                                                                                (4.19) 

Using this new form, we examine the boundary conditions for ( ),x t : 

For 0 2x L            and 0t =                             ( ) 0 1,0x T T = −                                 (4.20.a) 

For 0x =                  and 0t                              ( )0, 0t =                                           (4.20.b) 
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For 2x L=                and 0t                             ( )2 , 0L t =                                        (4.20.c) 

To solve this differential equation using the method of variables separation, we assume a solution 

of the form :  

                          ( ), ( ). ( )x t X x t =                                                                                         (4.21) 

Where: 

X(x) is a function of x only, and, ( )t  is a function of t only. 

Calculating the derivatives of ( ),x t  gives us: 

 

( ) ( )

( )

2 2

2

,
( )

,
( )

x t X x
t

x x

x t
X x

t t




 

 
=

 

 
=

 

                                                                                                         (4.22) 

Thus, the transformed differential equation becomes:  

( ) ( )2

2

( )
( )

X x tX x
t

x t






 
=

 
                                                                                                      (4.23) 

We can rearrange the previous equation as follows : 

2

2

1 1

.

X

X x t



 

 
=

 
                                                                                                                     (4.24) 

To facilitate solution, we can make both equations equal to a constant K which is called the 

separation constant :  
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2
2

2

1 1

.

X
K

X x t



 

 
= = −

 
                                                                                                         (4.25) 

We can now write two independent linear differential equations: 

( )

( )

2
2

2

2

0

. 0

X
K X x

x

K t
t


 


+ =




+ =



                                                                                                                  (4.26) 

The first equation: 

( )
2

2

2
0

X
K X x

x


+ =


                                                                                                                  (4.27) 

has a solution of the form: 

( ) 1 2( ) sin( )X x C cos Kx C Kx= +                                                                                                (4.28) 

The second equation: 

( )2 . 0K t
t


 


+ =


                                                                                                                   (4.29) 

has a solution of the form 

( ) 2

3 exp( . )t C K t = −                                                                                                              (4.30) 

The expression of ( ),x t  becomes: 

( )   2

1 2 3, ( ). ( ) ( ) sin( ) . exp( . )x t X x t C cos Kx C Kx C K t  = = + −                                              (4.31) 

We can simplify this expression by taking: 
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1 1 3

2 2 3

.

.

A C C

A C C

=

=
                                                                                                                                (4.32) 

The expression 4.31 becomes: 

( )   2

1 2, ( ) sin( ) .exp( . )x t A cos Kx A Kx K t = + −                                                                       (4.33) 

Using the boundary conditions established earlier, we can now determine the constants A1 

and A2. 

When we apply the second boundary condition (equation 4.20.b), we obtain: 

( )   2

1 20, (0) sin(0) .exp( . ) 0t A cos A K t = + − =                                                              (4.34) 

We can deduce that A1 must be equal to zero. 

( ) 2

2, sin( )exp( . )x t A Kx K t = −                                                                                        (4.35) 

It is clear that A2 cannot be equal to zero; otherwise, ( ), 0x t = throughout the domain. 

Application of the third condition to the limits (equation 4.20.c) yields:        

( ) 2

22 , sin(2 )exp( . ) 0L t A KL K t = − =                                                                                   (4.36) 

Since A2≠ 0, therefore: 

          ( )sin 2 0KL =                                                                                                                  (4.37) 

This condition is checked if and only if: 

       
2

n
K

L


=                                                                                                                              (4.38) 
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So, the solution may be expressed in the form of a series given by : 

    ( )
2

1

, sin exp .
2 2

n

n

n x n
x t A t

L L

 
 



=

    
= −    

     
                                                                        (4.39) 

     ( )
2

0 1

0

1
sin         ; 1,3,5....

2

L

n

n x
A T T dx n

L L

 
= − = 

 
                                                                (4.40) 

An may be determined by introducing the initial conditions (for n = 1, 3, 5, ...) 

     ( ) ( )
2

0 1 0 1

0

1 4
sin

2

L

n

n x
A T T dx T T

L L n





 
= − = − 

 
                                                                     (4.41) 

The overall solution becomes (for n = 1, 3, 5, ...): 

   

2

1

10 1

4 1
sin exp .

2 2n

T T n x n
t

T T n L L

 






=

 −    
= −    

−      
                                                                       (4.42) 

 

 

Figure 4.5: Solving the transient heat equation for t=0.1s 
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Figure 4.6: Solving the transient heat equation for n=199 

4.4 TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS, LONG 

CYLINDERS, AND SPHERES WITH SPATIAL EFFECTS  

     Abacus method 

This section examines the temporal and spatial temperature variations in one-dimensional 

systems like a large plane wall, a long cylinder, and a sphere. We consider these geometries with 

a plane wall of thickness 2L and a cylinder and sphere, both with a radius of r0 

Initially, each of these bodies is at a uniform temperature Ti for (t=0) as illustrated in Figure 

4.7, they are suddenly introduced into a vast surrounding medium maintained at a constant 

temperature T∞. Convection heat transfer occurs between these bodies and their surroundings, 
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characterized by a uniform and constant heat transfer coefficient h. Notably, each case 

demonstrates inherent geometric and thermal symmetry; the plane wall, for example, is symmetric 

about its central plane (x=0). The cylinder is symmetrical along its central axis (r=0), and the 

sphere is symmetrical around its central point (r=0). 

Figure 4.8 illustrates the evolution of the temperature distribution within a plane wall over 

time. Initially, at t=0, the entire wall is at a uniform temperature Ti. It is then subjected to a 

surrounding medium at a constant temperature T∞. (the temperature decrease implies that T∞ < Ti). 

However, as heat is transferred from the wall to the surroundings, the temperature at and 

near the surfaces begins to decrease. 

 

(a) A large plane wall                               (b) A long cylinder             (c) A sphere 

Figure 4.7: schematic of the simple geometric configurations that result in one-dimensional heat 

transfer 
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Figure 4.8: Transient temperature . 

Consequently, a temperature gradient is developed across the wall's thickness, causing heat 

to conduct from the warmer inner regions toward the cooler outer surfaces. It's notable that, at the 

initial moments, the temperature at the centre of the wall remains at Ti because it takes time for the 

thermal effects from the surface to reach the core. 

The initial uniform temperature at the centre of the wall is maintained until a later time, t2. 

Throughout this process, the temperature distribution remains symmetric about the central plane. 

As heat transfer continues, the temperature profile becomes progressively flatter, eventually 

approaching a uniform temperature T∞. At this point, the wall achieves thermal equilibrium with 

its surroundings, and heat transfer ceases due to the absence of a temperature gradient. Analogous 

behaviors are also observed for the long cylinder and the sphere. 

The analysis of the one-dimensional, unsteady temperature distribution, T(x,t), in a wall 

requires the formulation and solution of a partial differential equation (PDE), a task that typically 

involves advanced mathematical techniques. 
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While a rigorous mathematical solution exists, it typically involves an infinite series that can 

be difficult and time-consuming to calculate. For this reason, it is necessary to present the solution 

in a more accessible format, such as tables or graphs. 

However, the solution to this transient heat transfer problem depends on numerous physical 

parameters and variables (x, L, t, λ, ρ, Cp, h, Ti, T∞), making a practical graphical representation 

challenging.  

To overcome this difficulty, the parameters are combined into dimensionless numbers. 

Among this numbers, we can mention: [1] 

Dimensionless temperature: ( )
( ),

,
i

T x t T
x t

T T
 



−
=

−
 

Dimensionless distance from the center: 
x

X
L

=  

Dimensionless heat transfer coefficient: chL
Bi


=  (Biot number) 

Dimensionless time 
2

c

t

L


 = (Fourier number) 

Nondimensionalizing the variables is a powerful method for simplifying the analysis of 

transient heat transfer. The solution can be expressed as a function of only three dimensionless 

parameters: X, Bi, and τ. This significant reduction in variables makes it feasible to present the 

solution graphically. It should be noted that the dimensionless quantities defined for a plane wall 

can be adapted for cylinders and spheres by substituting the spatial variable x with the radial 

variable r and the half-thickness L with the outer radius ro. 
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It's important to note that the definition of characteristic length for the Biot number differs 

between these two types of analysis. It is the half-thickness for a plane wall L, and for a cylinder 

or sphere, it is the radius r0 , unlike the V/A ratio used as the characteristic length in lumped 

capacitance methods. This distinction is crucial for correctly applying the analytical solutions and 

charts for these geometries. 

Although the exact solution to one-dimensional transient heat conduction problems involves 

a mathematically complex infinite series, a much more practical approach is often used. A key 

feature of these series is their rapid convergence over time. For this reason, when the Fourier 

number   is 0.2 or greater, using only the first term of the series provides a highly accurate 

approximation, with an error of less than 2 percent. 

For problems where the Fourier number   is 0.2 or greater, the infinite series solution 

converges rapidly, making it very convenient and accurate to use a one-term approximation. The 

general solution is simply the first term of the series, given by the following equations for each 

geometry : 

Plane wall ( )
( )

( )
2

1

1 1wall

,
,  cos / , 0.2

i

T x t T
x t A e x L

T T

    −



−
= = 

−
                                  (4.43) 

Cylinder ( )
( )

( )
2

1

1 0 1 0cyl

,
,  / , 0.2

i

T r t T
r t A e J r r

T T

    −



−
= = 

−
                                      (4.44) 

Sphere ( )
( ) ( )

( )

2
1 1 0

1sph
1 0

, sin /
,  , 0.2

/i

T r t T r r
r t A e

T T r r

  
 



 −



−
= = 

−
                                        (4.45) 
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In this one-term approximation, the constants A1 and λ1 are dependent only on the Biot 

number (Bi). Their corresponding values for plane walls, cylinders, and spheres are typically 

provided in tables, such as Table 4.2, for various Biot numbers. 

Table 4.2. Coefficient used in the one term approximate solution of transient one-dimensional 

heat conduction 
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       The term J0 represents the zeroth-order Bessel function of the first kind, and its values can be 

evaluated from the Table 4.3.  

Table 4.3: The zeroth and first order Bessel Function of the first kind 
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Given that cos (0)=1 and J0(0)=1, and knowing that ( )sinx/x 1

0
Lim

x

=

→

, these expressions 

simplify to the following forms at the centre of a plane wall, cylinder, or sphere: 

 Center of plane wall (x=0) 
2

10
0,wall 1  

i

T T
A e

T T

  −



−
= =

−
                                                           (4.46) 

Center of cylinder (r=0 )  
2

10
0,cyl 1  

i

T T
A e

T T

  −



−
= =

−
                                                          (4.47) 

Center of sphere (r=0)    
2

10
0,sph 1  

i

T T
A e

T T

  −



−
= =

−
                                                           (4.48) 

With a known Biot number, the formulas presented above allow us to calculate the 

temperature at any point in the material. Determining the constants A1 and λ1 typically involves 

interpolation.  

For users who prefer graphical interpretation, the above relations are often presented in the 

form of transient temperature charts, illustrating the one-term approximation solutions. however, 

it should be noted that while these charts offer a convenient visual approach, they can be difficult 

to read with high precision and are susceptible to interpretation errors. Consequently, the 

mathematical relations themselves are generally considered a more reliable method than using the 

charts called Heisler charts. 

The transient temperature charts for a large plane wall, long cylinder, and sphere illustrated 

in (figures from 4.9 to 4.17) are attributed to M. P. Heisler (1947) and are referred to as Heisler 

charts, who developed them. These charts were later supplemented by H. Gröber in 1961. For each 

geometry, there are typically three charts: the first is used to determine the temperature at the center 
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(T0) at a given time t, and the second chart helps determine the temperature at any other locations 

within the body at that same time, expressed in terms of T0. The third chart is used to determine 

the total amount of heat transferred up to time t. These graphs are accurate for Fourier numbers (ꞇ) 

of 0.2 or greater. 

Figure 4.9: Midplane temperature in a plane wall .  
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Figure 4.6: Temperature distribution in a plane wall [26] 

 

 

 

 

Figure 4.10: Centerline temperature in a plane wall. 

 

 

 

 

Figure 4.7: Total amount of heat transferred 

Figure 4.3: Temperature distribution for  a cylinder 

 

 

 

Figure 4.11: Dimensionless heat loss Q/Q0 of a plane wall. 

 



 

114 
 

 

Figure 4.12: Centerline temperature for an infinite cylinder . 

 

 

 

 

Figure 4.13: Distribution temperature for an infinite cylinder 
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Figure 4.14: Dimensionless heat loss Q/Q0 of a cylinder.

 

Figure 4.15: Center temperature in a sphere. 
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Figure 4.16: Distribution temperature in a sphere . 

 

Figure 4.17: Dimensionless heat loss Q/Q0 of a sphere  
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4.5 SOLVING THE 1D TRANSIENT HEAT EQUATION USING THE LAPLACE 

TRANSFORM METHOD 

The Laplace Transform method is a powerful tool for solving linear differential equations, 

especially those modeling transient phenomena such as heat transfer. It converts a differential 

equation into an algebraic equation in the Laplace domain (the 's' domain), which is often much 

easier to handle. 

The 1D transient heat equation 

Consider a semi-infinite wall (0≤x<∞) initially at a uniform temperature Ti. At time t=0, the 

surface at x=0 is suddenly raised and maintained at a temperature T0.  

The boundary conditions are: 

1. Initial condition: T(x,0) =Ti for x≥0 

2. Boundary condition 1 : T (0, t) =T0 for t>0 

3. Boundary condition 2 : T (∞, t) =Ti for t>0  

The general 1D heat equation for a homogeneous, isotropic material without heat generation 

is :  

            

2

2

1
0

T T

x t

 
− =

 
                                                                                                           (4.49) 

Where: T(x,t) is the temperature as a function of position x and time t. 

The Laplace transform of a function T(x, t) is defined as : 

                   
0

( , ) ( , ) stT x s T x t e dt



−=                                                                                            (4.50) 
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We apply the Laplace transform with respect to time (t) to the heat equation. We denote : 

 ( , ) ( , )T x s L T x t=  

                  
2

2

0 0

1
0st stT T

e dt e dt
x t

 

− − 
− =

                                                                                (4.51) 

Integration by parts gives :  

         ( ) ( ) ( )
2

2 0
0 0

1
, , , 0

t
st st st

t

d
e T x t dt e T x t s e T x t dt

dx 

 
=

− − −

=

 
− + = 

 
                                           (4.52) 

             ( )
2

2

1
0 ,0 0

d T s
T x T

dx  
− − − =                                                                                   (4.53) 

Hence 

               
2

2

id T s T
T

dx  

−
− =                                                                                                       (4.54) 

This is now an ordinary differential equation (ODE) in x in the Laplace domain 

The ODE is a second-order linear equation. The general solution to the homogeneous equation 

2

2
0

d T s
T

dx 
− =  is of the form: 

             

( ) ( ) ( )

2

, exp exp

:  

T x s A kx B kx

s
Where k



= − +

=
                                                                              (4.55) 

A particular solution to the complete equation is a constant: 

                   
i

p

T
T

s
=                                                                                                                   (4.56) 
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So, the general solution of the ODE is: 

              ( ) ( ) ( ), exp exp iT
T x s A kx B kx

s
= − + +                                                                      (4.57) 

The constants A and B are determined from the boundary conditions:  

For x=0 , We have ( ) 00, iT T
T s A B

s s
= + + =  

For x        ∞ , we have  ( ), 0i iT T
T s B B

s s
 = + =  =  

So, 0 iT T
A

s

−
=  .Therefore, ( ) ( )0, expi iT T T

T x s kx
s s

−
= − +  

Applying the inverse Laplace transform from a given table :  

 

We obtain: 

( )0
4

i i

x
T T T erfc T

t

 
= − + 

 
 

( )f t  1  t  nt  
ate  cos  (  )t   (  )sin t  

2

x
erfc

t

 
 
 

 

( )F s  1

s
 

2

1

s
 

1

!
n

n

s +
 

1

s a−
 

2 2

s

s +
 

2 2s



+
 

 
2 

k xe s
k

s a

−
 

= 
 
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EXERCISES 

EXERCISE 4.1 

A long cylindrical shaft composed of stainless steel is initially at a uniform temperature Ti of 400 

°C. The shaft is allowed to cool slowly in an ambient environment. The thermal properties of the 

stainless steel at room temperature are: 

  ( )3 27900 / , 477 / . , 14,9 / . and 3,95 /kg m Cp J kg K W m K m s     = = = =       

Determine the following parameters at a specified time  

1. The centerline temperature of the cylinder. 

2. The total heat transfer per unit length from the cylinder up to that time. 

Solution: 

Analysis First the Biot number is calculated to be 

( )0
60 0,175.

0,705
14,9

h r
Bi


= = =  

The constants λ1 and A corresponding to this Biot number are, from Table 4.2 

1 11,0935 and 1,1558A = =  

The Fourier number is   
( ) ( )

( )

6

22

3,95 10 20 60
0,1548

0,175c

t

L




−  
= = =  

which is very close to the value of 0.2. Therefore, the one-term approximate solution (or the 

transient temperature charts) can still be used, with the understanding that the error involved will 

be a little more than 2 percent. Then the temperature at the center of the shaft becomes 
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( ) ( ) ( )
22

1
1,0935 0,15480

0,cyl 1

0
0

 1,1558 0,9605

150
0,9605 390

400 150

i

T T
A e e

T T

T
T C

 
−−



−
= = = =

−

−
=  = 

−

 

The maximum heat can be transferred from the cylinder per meter of its length is 

( )  

( ) ( )  

22

0

max

7900 0,175 .1 760,1

760,1 477 400 150 90638p i

m V r L kg

Q mC T T J

  



= = = =

= − =   − =
 

Once the constant J1= 0.4689 is determined from Table 4.3 corresponding tothe constant 

λ1=1.0935, the actual heat transfer becomes 

( )

 

1 10

max 1cyl

390 150 0,4689
1 2 1 2 0,177

400 150 1,0935

0,177 90638 16015

i

JT TQ

Q T T

Q J








   − − 
= − = − =     

− −    

=  =

 

EXERCISE 4.2  

A steel firewall panel, 5 cm thick, is initially at a uniform temperature of 25 °C. The exterior 

surface is suddenly exposed to a temperature of 250 °C. Estimate the temperature at the center and 

at the inner surface of the panel after 20 s of exposure to this temperature.  

The thermal diffusivity of the panel is 0,97. 10−5 (m2/s). 

Solution 

To determine if the panel can be approximated by a semi-infinite solid, we calculate the 

Fourier number: 
( )

5

22

0,97 10 20
0,0776

0,05

t

L




− 
= =  
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Since τ < 0.1, the approximation should be acceptable. Thus, using equation (4.13) with x = 

0.025 for the temperature at the center 

 
( )

( )

0

5

2

250 0.025
0,8974

25 250 2 0,97 10 20

250
0,8974

225

70.7

s

s

T T x
erf

T T t

T
erf erf

T
erf

T C



−

−  
=  

−  

 −
= = 

 −   

−
=

−



 

 

 

 

 

 

 

 

Fig. Infinite solid of finite thickness. 

For the interior surface, x = 0.05  

( )
5

250 0.05
1,795

225 2 0,97 10 20

0,9891

27,5

T
erf erf

T C

−

 −
= = 

 −   

=


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Thus, the temperature of the interior surface has not changed greatly from its initial value of 

25 ◦C, and treating the panel as a semi-infinite solid is therefore a reasonable approximation. 

EXERCISE 4.3  

A solid spherical,20cm in diameter, has an initial temperature of 400 °C. It is suddenly exposed 

to air at an ambient temperature T∞ of 25°C. The convection heat transfer coefficient (h) between 

the ball and the air is 80 (W/m2. K) 

1. Calculate the time required for the sphere's temperature to decrease to 85°C.  

2. Determine the initial rate of cooling at the moment of exposure. 

3. Calculate he heat transfer rate from the sphere after 60 seconds. 

We give:   ( )37800 / , 450 / . , 40 / .pkg m C J kg K W m K  = = =      

Solution 

Characteristic length   0.00333
3

c

V R
L m

A
= = =  

( )80 0.00333.
0.00666

40

ch L
Bi


= = =  

Since Biot number is <0.1, lamped system analysis can be applied 

( )

.
exp

.

85 25 80.
exp

400 25 7800 450 000333

i p c

T T h t

T T C L

t






 − −
=   −  

 − −
=   −  

 

( )7800 450 0,00333 375

80 60
t Ln

 
=  

 
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Therefore     5981.5 1,66t s h= =  

Now for initial rate of cooling, we have  

( )

( )

( )

. .

. .
Or 

p i

i

p

T
mC h A T T

t

h A T TT

t V C






− = −



−
=



 

( )  
80

 400 25 2,567 /
7800 450 0.00333p

T
C s

t


= − = 

  
 

Instantaneous heat transfer rate is  

( ). .in h A T T = −  

But  ( ) ( )
.

exp
.

i

p c

h t
T T T T

C L
 

 
− = − − 

  

 

( )
.

. . exp
.

in i

p c

h t
h A T T

C L





 
= − − 

  

 

Here t=60s 

( )( ) ( )

 

2 80 60
80. 4 0,01 . 400 25 exp

7800 450 0.00333

25

in

W

 
 

= − −   

=

 

The total energy transferred during first minute is  
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( )
.

. 1 exp
.

p i

p c

h t
Q V C T T

C L





  
= − − −   

   

( ) ( )

 

34 80 60
7800 0,01 450 400 25 1 exp

3 7800 450 0.00333

1856

Q

J


    

=   − − −         

=

 

EXERCISE 4.4 

A solid cubical of aluminum with sides measuring 10 mm is initially at a uniform 

temperature Ti of 50°C. It is placed directly into a flame environment at a temperature T∞ of 800°C. 

The convective heat transfer coefficient h between the flame and the aluminum is 190 W/(m2.K). 

The desired final temperature Tf  of the cube is 300 

1°/ Calculate the total time needed for achieving the final temperature of the cube, the value of 

300°C. 

Solution 

For Aluminum:   ( )32719 / , 871 / . , 215 / .pkg m C J kg K W m K  = = =      

The characteristic dimension for a cube with side Lis: 

3

26 6
c

V L L
L

s L
= = =  

Boot’s number is 

2. 190 1 10
0,001473 0,1

6 215

ch L
Bi



− 
= = = 


 

As the Biot number is less than 0.1, the lumped heat capacity analysis can be used, which 
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Gives exp
. .i p

T T hA

T T C V







  −
= −   −    

 

Inserting the given data, we have 

2300 800 190 6 10 1000
exp

50 800 871 2719 1000


  −   
= −  

−    
 

Therefore:  8,41 s =
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