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DEDICACTION

Heat transfer is a fundamental discipline that lies at the heart of our environment and our
technologies. Whether it's regulating the temperature of the human body, optimizing the
performance of an engine, designing air conditioning systems or improving the energy efficiency
of buildings, the principles of heat transfer are constantly at work. Mastering heat transfer is
therefore essential for engineers and scientists, enabling them to develop innovative solutions,
improve the efficiency of existing systems and meet the energy challenges of tomorrow, while

ensuring comfort, safety and performance.

This handout is the product of four years of experiences teaching heat transfer in the Physics
Department at the University of Tiaret. It's primarily aimed at Material Science students (3" year
LMD Energy Physics and Fundamental Physics), but also at any other higher education student

looking to deepen their knowledge of heat transfer.

The objective of this manuscript is to provide a comprehensive overview of heat transfer,
particularly the phenomenon of conduction. It starts with the fundamentals of heat transfer
(Chapter 1), then it progresses to the study of steady-state conduction, exploring one-dimensional
conduction in Chapter 2 and two-dimensional conduction in Chapter 3, using both analytical and
numerical tools (finite difference method). Chapter 4 is dedicated to solve the transient heat
equation, relying on various techniques such as the Laplace transform, graphical and tabular

methods, and the method of variable separation.

To reinforce skill acquisition, solved exercises are included at the end of each chapter.
We sincerely hope this handout serves as a practical and relevant reference for everyone interested

in the study of heat transfer.



NOMENCLATURES

A Surface [m?]

g Heat flux [W/(m?)]

A Thermal conductivity [W/(m.K)]

aa—TTemperature gradient [K/m]
n

ég Rate of heat generation [W]

dx Elementary position in x direction [m]

dy Elementary position in y direction [m]

dz Elementary position in z direction [m]

g Rate of heat generation per unit volume [W/m?]

E s Rate of energy stored in the control volume [W]
éin Energy inflow [W]

Eou Energy outflow [W/m?]

0.,,, Convective heat flux [W/m?]

h Convection heat transfer coefficient [W/(m2.K)]

T, Fluid temperature[K]

T Temperature [K]



p Density [kg/(m3)]

C, Specific heat [J/(kg.K)]
t Time [s]

r Radius [m]

¢ Rtae of heat transfer [W]

o Stefan Boltzman constant [W/(m#*K%)]
L, Characteristic length [m]

R,, Thermal resistance [°C/W]

F, Fourier number

Bi Biot number
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CHAPTER 1: INTRODUCTION TO HEAT TRANSFER
1.1 INTRODUCTION

As known from experience, thermodynamics focuses on systems in equilibrium and the
transitions between their states. In contrast, heat transfer deals with systems that are not in thermal
equilibrium, classifying it as a non-equilibrium process. Consequently, a complete understanding
of heat transfer requires more than just the principles of thermodynamics. Nevertheless, the laws
of thermodynamics provide the fundamental principles for studying heat transfer. The first law
states that the rate of energy input to a system equals to the rate of energy stored in it. The second
law of thermodynamics defines the natural direction of heat flow, stating that heat spontaneously

transfers from the high-temperature region to the low-temperature regions.

A fundamental requirement for heat transfer is the presence of a temperature difference.
Without this difference between two mediums, heat transfer cannot occur. This temperature
difference drives heat transfer in much the same way that a voltage difference causes electric
current to flow, or a pressure difference induces fluid motion. The rate of heat transfer in a specific
direction is directly proportional to the temperature gradient defined as the temperature difference
per unit length. Consequently, A greater temperature gradient corresponds to a higher heat transfer

rate.

1.2 DEFINITIONS

System:

A system, as shown in figure 1.1, refers to a specific portion of the universe under
investigation, all the rest being considered as the surroundings. A closed system is characterized

by the absence of mass transfer across its boundaries. Conversely, a control volume, as illustrated
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in figure 1.2, is a defined region in space that allows both mass and energy to cross its boundaries.

Heat 6Q)

Work §W

Figure 1.1: System with work and heat flow .

The thermodynamic state of a system is defined by a specific set of property values required
to fully describe it. A system is in equilibrium when its state remains constant over time. The state

of matter can exist in different phases: solid, liquid, or gas.

Heat Q | | | Out
I b
n.__ .
- H“} Wepase shaft work

Figure 1.2: Control volume with flow in and out, heat flow in, and shaft work out .

Steady state

Steady state describes a state where the temperature profile within a material remains
constant over time. In this state, all heat introduced or produced within a substance is
simultaneously transferred away. This concept is fundamental to engineering applications such as

choosing insulation for superheated steam pipes to prevent heat loss, developing extended surfaces



(like fins) to efficiently cool electronic devices or air-cooled engines, and maintaining stable

operation in nuclear systems .

Unsteady state:

When the rate of internal heat generation or the boundary conditions of an object change,
its temperature distribution also changes over time. This state is called as unsteady state or
transient. Processes such as heating and cooling exemplify this behaviour. Mathematically, these

changes force the temperature distribution to evolve .

1.3 MODES OF HEAT TRANSFER

There are three modes of heat transfer: conduction, convection, and radiation. In this section,

these modes of heat transfer are summarized.

1.3.1 Conduction Heat Transfer

Conduction heat transfer happens across in all three states of matter: solids, liquids, and
gases. While often associated with solids in engineering applications, this phenomenon is also a
significant mechanism in fluids, even when fluid motion is present. Fundamentally, conduction
phenomenon is the transfer of thermal energy from higher to lower temperatures within a medium

through molecular diffusion, without any bulk movement of the medium itself. (Figure. 1.3.a).

The term diffusion is also used to express conduction. Diffusion heat transfer or conduction

heat transfer are two statements that are equivalent in many heat transfer reports and papers.

1.3.2 Convection Heat Transfer

Convection heat transfer is a phenomenon observed in both liquid and gaseous phases. It is

characterized by the bulk movement of the fluid, resulting in the transfer of thermal energy from



one point to another within the fluid domain.

Convection heat transfer is directly dependent on fluid motion. If a fluid is motionless,
convection does not occur. A typical example is the transfer of heat from a heated plate to a cooler
fluid flowing around it. The moving fluid carries thermal energy away from the plate surface and

distributes it throughout the fluid domain (Figure 1.3.b).

The principal law describing this phenomenon is Newton's law of Cooling. In practical

terms, there are three distinct types of convective heat transfer.

r, > o > T Surface, T,
Moving flwid, T,
S Surface, T,
e — q"
= ] -:l.
‘ ‘ - | [
(@) (b) (©)

Figurel.3: Conduction, convection, and radiation heat transfer modes.

Forced convection: this phenomenon occurs when an external force, like a fan or pump,

causes the fluid to move and heat to transfer.

Natural convection is a heat transfer mechanism in which fluid motion is driven by density

gradients within the fluid under the influence of gravity (or other body forces). According to
Archimedes' principle, less dense regions undergo an upward buoyant force, causing them to

move. This phenomenon is also known in the literature as free convection.
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Mixed convection is essentially forced convection where natural convection also plays a

significant role and can't be ignored. For this reason, the buoyancy force must be taken in the

equations that describe the flow.

1.3.3 Radiation Heat Transfer

Thermal radiation is a fundamental heat transfer mechanism where all matter with a
temperature above absolute zero emits energy as electromagnetic waves (photons). Unlike
conduction and convection, radiation does not require a material medium and can, therefore,
propagate through a vacuum. As illustrated in (Figure 1.3 c), a net heat transfer occurs between

surfaces at different temperatures, with energy flowing from the hotter to the colder body.

1.4 CONDUCTION HEAT TRANSFER PROCESS
Energy transfer by conduction is accomplished in two ways:

The first mechanism: Energy transfer through conduction occurs primarily through
molecular interaction and is the most universal mode of heat transfer. When a substance is heated,
its molecules gain kinetic energy and vibrate more intensely. These highly energetic molecules

then collide with adjacent, less energetic molecules, transferring some of this vibrational energy.

This process continues, causing a chain reaction of energy transfer throughout the material.
This mechanism is present in all states of matter solids, liquids, and gases whenever a temperature

gradient exists.

The second mechanism of conduction heat transfer is through free electrons. In materials
like pure metals, a high number of unbound electrons are able to move throughout the atomic

lattice. These electrons are highly efficient carriers of thermal energy, significantly contributing to
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the overall heat transfer. This explains why pure metals are excellent thermal conductors: their
high concentration of free electrons allows for rapid energy transport. This characteristic is greatly

reduced in alloys and is almost absent in non-metallic solids.

1.5 FOURIER’S LAW

Fourier's Law is the fundamental principle of conduction heat transfer. It states that the heat
flux (rate of heat transfer per unit area) is directly proportional to the temperature gradient in a
specific direction. The constant of proportionality in this relationship is the thermal conductivity
A, which is a material property that can vary with temperature. The rate of heat transfer by

conduction is determined as follows:

¢=—/1HﬁTH.A=—lg—-;A (1.1)

In many systems, the area A is not constant but varies with the distance along the n direction.

The temperature gradient is a vector oriented normal to the isothermal surface, and it

corresponds mathematically to the directional derivative of the temperature field in that direction.

Yy
n
Isotherms
\\ \ » X
/ T\\
> |  T+dT

T-dT

Figure. 1.4: Temperature vectors
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1.6 THERMOPHYSICAL PROPERTIES

Understanding thermophysical properties is essential for analyzing and predicting
conduction heat transfer. These properties describe the manner in which a material responds to and
participates in the transfer of thermal energy. For conduction, where heat is transferred through a
stationary medium by molecular vibration and free electron movement, three properties are
particularly important: thermal conductivity, specific heat capacity, and density, which combine

to form thermal diffusivity.

Thermal Conductivity

Thermal conductivity (1) quantifies a material's ability to conduct heat. Simply put, it's a
measure of how easily heat can flow through a substance, its unit is [W/m.K]. Materials with high
thermal conductivity, like metals (e.g., copper, aluminium), are excellent heat conductors and feel
"cold" to the touch because they quickly draw heat away from your hand. Conversely, materials
with low thermal conductivity, such as insulation, wood, or air, are poor conductors and are thus

good insulators.

The value of A depends significantly on the material's microstructure, temperature, and
pressure. For example, in solids, heat is conducted by lattice vibrations (phonons) and free
electrons. Metals have a high concentration of free electrons, which makes them excellent
conductors. In liquids and gases, molecular collisions are the primary mechanism for heat transfer,

leading to generally much lower thermal conductivities compared to solids .
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Specific Heat Capacity :

The specific heat capacity (Cp): represents the amount of energy required to raise the
temperature of a unit mass of a substance by one degree Celsius (or Kelvin). It is generally
expressed in [J/kg.K] It essentially tells you how much thermal energy a material can store. Water,
for instance, has a very high specific heat capacity, meaning it can absorb a lot of heat without a
significant temperature change, which is why it's used extensively in cooling systems. Materials

with low specific heat capacity heat up and cool down quickly.

Like thermal conductivity, the specific heat capacity varies with temperature and phase. For
most engineering applications, specific heat is often treated as constant over a small temperature

range, but for larger variations, its temperature dependence must be considered.

Density

Density (p) is defined as the mass per unit volume of a material, so its unit is [kg/m®]. While
not directly a "heat transfer" property like X and Cp, it's crucial for understanding the amount of
mass present to store energy. In conduction, density affects the thermal inertia of a material, i.e.
the amount of matter available to heat up or cool down. A denser material will generally have more
mass in a given volume, which means that it will requires more total energy to achieve a certain

temperature change if its specific heat capacity is comparable.

Density also varies with temperature and pressure, especially for gases and liquids, but for

solids, it's often considered relatively constant over typical operating temperature ranges.
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Thermal Diffusivity

The combination of these three properties leads to a critically important derived property:
thermal diffusivity (o). It's defined as the ratio between thermal conductivity and the product of
the material's density (p) and its specific heat capacity (Cp). Thermal diffusivity measures the rate
at which thermal energy diffuses or propagates through a material. It's the ratio of thermal
conductivity to the heat capacity per unit volume. Materials with high thermal diffusivity respond
quickly to changes in temperature at their boundaries because heat penetrates more quickly.
Conversely, materials with low thermal diffusivity will take longer to undergo temperature
changes throughout their volume. This property is particularly essential in transient (time-
dependent) conduction problems, as it directly influences the rate of temperature propagation

within a solid.
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Tablel.1: Thermal conductivity of different materials.

Materials

Metals

Silver (pure)
copper(pure)
Aluminum (pure)
Nickel(pure)
Iron (pure)
Carbon steel, 1%

Lead (pure)

Chrome Nickel Steel (18% Cr,8%Ni)

Nonmetallic Solids
Diamond
Magnesite
Sandstone

Glass, window
Maple or oak

Hard rubber
Styrofoam

Liquid

Mercury

Water

Ammonia

Freon 12, CCI2F2
Gases

Hydrogen

Helium

Air

Water vapor (saturated)

Carbon dioxide
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Thermal conductivity (W/m.°C)

410
385
202
93
73
43
35
16,3

2300
4,15
1,83
0.78
0.17
0,15
0.033

8,21
0,556
0,54
0,073

0,175
0,141
0,024
0,0206
0,0146



1.7 HEAT DIFFUSION EQUATION

A major objective in heat conduction analysis is to determine the temperature field within a
material under specified boundary conditions. This spatial temperature distribution allows us to
calculate the conductive heat flux at any point within the medium or on its surface, as defined by
Fourier's law. To determine the temperature distribution, we will apply the energy conservation
principle. This involves establishing a differential control volume, identifying all relevant energy
transfer processes, and applying their corresponding rate equations. This process yields a
differential equation which, when solved with the appropriate boundary conditions, describes the

temperature distribution within the medium.

We'll now consider a homogeneous medium where convection is absent and the temperature
field T(x,y,z) is described using cartesian coordinates. The initial step in applying the energy
conservation method is to define an elementary control volume with dimensions of dx-dy-dz, as

illustrated in figure 1.6.

Figure 1.6: Differential control volume, dx.dy.dz, for conduction analysis in cartesian

coordinates .

We apply the first law of thermodynamics at a given instant by considering the energy

transfers within our defined control volume. Due to the presence of temperature gradients, heat
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conduction occurs across each surface. We can represent the conduction heat rates perpendicular
to the surfaces at positions x, y, and z by gx, gy, and gz. The description of the rates corresponding
to the opposite surfaces can be carried out using a Taylor series expansion, where we simplify the

expressions by neglecting higher-order terms.

qx+dx = qx + aqx dX

OX
oq
qy+dy =0y +Eydy (12)
oq
=(,+—=0dz
qz+dz qz 82

Equation 1.2 expresses that the rate of heat transfer in the x-direction at the point (x+dx)

corresponds to that at the original point (x), with the addition of an infinitesimal variation.

This adjustment is quantified by the product of the change rate of heat transfer with respect
to x and the incremental distance dx. It is also necessary to take into account the internal heat

generation within the medium represented by a source term .
E, = qdxdydz (1.3)

The term q represents the internal volumetric heat generation rate within the medium,

expressed in (W/m3). Furthermore, the internal thermal energy stored in the control volume can
also vary. For materials that do not undergo a phase change, latent heat is not considered, and the

stored energy term is given by:

Ex = pC, %dedydz (1.4)
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T .
Where pC a represents the rate of thermal energy change per unit volume.
P ot

It's important to note that the volumetric energy generation term q in heat transfer equations

represents the conversion of other energy forms into thermal energy within a medium. This is a
fundamentally different process from energy transfer mechanisms like conduction, convection,

and radiation, which describe the movement of thermal energy from one location to another.

The energy generation term can be positive, indicating a source of heat (e.g., from an
exothermic chemical reaction, electrical resistance heating, or nuclear fission). Conversely, a
negative value represents an energy sink, where thermal energy is consumed, as is the case in
certain endothermic chemical reactions. Unlike energy generation, the stored energy term

quantifies the rate at which a material's internal thermal energy increases or decreases.

The final step of the energy conservation method is to combine all the rate equations to
express the fundamental principle of energy conservation. In terms of rates, this principle is

generally expressed as:

Rate of energy stored= Rate of energy in + Rate of energy generated - Rate of energy out

Mathematically, this can be written as :

ést = éin—éout+ég (15)

Identifying the conduction rates as the energy input ,qi, and the output, gs, and then

substituting equations 1.2 and 1.3 in equation 1.5, we obtain :

g oT
q, + qy +0, = Oox — qy+dy — 0.4 +Q dXdde = pCp EdXdde (16)
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Substituting from equations 1.2, it follows that:

aq aq oq, . ° oT
——X dx——Ldy - —=dz+qdxdydz = pC_— dxdydz 1.7
P~ Y qdxdydz = pC, —- dxdy (1.7)

The conduction heat rates may be evaluated from Fourier’s law:

oT
=1
% Ox
oT

qy Z_AE (18)
oT
=) —
% oz

To obtain the heat transfer rates, each heat flux term in Equation 1.8 is multiplied by the
appropriate surface area of the infinitesimal control volume. Subsequently, by substituting these
expressions into the energy balance (equation 1.7), and dividing the entire equation by the control
volume (dx-dy-dz), we find:

Q(zﬂ}ﬁ(i@}ﬁ[zﬁ}d:p@ﬁ (1.9)
ox\_ ox) oy\ oy) oz\ oz ot

Equation 1.9 is the general heat diffusion equation in cartesian coordinates, it represents the
main equation for analyzing heat conduction. By solving it, we can determine the temperature at
any point in material (x,y,z) and at any time. Despite its apparent complexity, the equation's
fundamental meaning is a simple statement of the principle of energy conservation. When a
material's thermal conductivity (L) is assumed to be constant, the general heat diffusion equation
(equation 1.9) simplifies to:

PT &1 T g 1aT

+ + +—= 1.10
ox> oy orr A a ot (1.10)
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Where o = A is the thermal diffusivity.
PC,

The general form of the heat equation can often be further simplified. For example, in a

steady-state system, the rate of energy stored is zero. Consequently, equation 1.9 simplifies to the

following :
2(1@)4_2 Pl +£(ﬂﬂj+é=0 (1.11)
ox\_ ox) oy\ oy) oz\ oz

Moreover, under the specific conditions of one-dimensional heat transfer (for instance, along

the x-axis) and the absence of energy generation, equation 1.11 simplifies significantly to:

T
92 /18— =0 (1.12)
OX\ OX

An important consequence of this result is that when heat transfer is steady, occurs in only
one direction, and there's no internal energy generation, the rate of heat transfer per unit area (heat

flux) is uniform throughout the heat path. The heat equation is not limited to cartesian coordinates

and can also be expressed using cylindrical and spherical coordinate systems .

1.8 CONDUCTION EQUATION IN RADIAL GEOMETRY

Equation (1.10) may be transformed into either cylindrical or spherical coordinates by

standard calculus techniques. The results are as follows:

In cylindrical coordinates

2 2 2 y
OT 10T 10T T q_10T (1.13)
or ror r°o0° o022 A «a ot
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In spherical coordinates

2 2 .
5T+26T+ 1 6(Sin98Tj+ 1 6T+ﬂ_lﬂ (1.14)

a? ror r’sind oo 00) r’sinf0of” A a ot
The general heat conduction equations in cartesian, cylindrical, and spherical coordinates
can be simplified significantly under common physical assumptions relevant to practical
applications. These simplifications reduce mathematical complexity and allow us to focus on the
dominant modes of heat transfer.
1.9 BOUNDARY AND INITIAL CONDITIONS.

Boundary (surface) conditions:

The most frequently encountered boundary conditions in conduction are as follows:

A. Dirichlet Boundary Condition (Constant surface Temperature):

The surface temperature of the boundaries is specified as either a constant value. This type

of boundary condition is known as a Dirichlet boundary condition. Generally, it is expressed by

TO,t)=T,

T(Lt)=T, (1.15)

B. Neumann Boundary Condition (Constant heat flux):

The heat flux boundary condition specifies the rate of heat transfer across the system's edges,
which may be constant or vary with location and/or time, this condition dictates that the net heat
flux at a boundary must be zero. We adopt the convention that heat flux entering a boundary is

positive, while heat flux leaving is negative.
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Thus, remembering that the statement of Fourier’s law is independent of the choice of
direction for the heat flux vector gn, we can conveniently define g, such that it is positive in the

outward normal direction from the surface. Accordingly, we have from Figure 1.7:

L +q

1.16
N n (1.16)

Whereag denotes differentiation along the normal of the boundary. The plus and minus signs of
n

the left-hand side of equation (1.16) correspond to the differentiations along the inward and
outward normal, respectively, and the plus or minus signs on the right-hand side correspond to the
direction of heat flux: positive when heat leaves the boundary (outward), and negative when heat

enters the boundary (inward) .

In
Qn +q// = 01

~gntq’’ =0, -
IR =
an . / q//
, 7 Z
(inward) n‘__j;\\i’ (inward) n 7 -——

Figurel.7: Constant heat flux boundary conditions.
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C. No heat flux (insulation)

A special case of the heat flux boundary condition is the insulated or adiabatic surface, which

is obtained by setting the heat flux to zero q', =0 in equation (1.16). This yield:

or

—=0 1.17
= (1.17)

D. Robin Boundary Condition (Convection):

When the heat flux across the boundaries of a continuous body is not known, it's often
assumed to be proportional to the temperature difference between the body's surface and the
surrounding environment. This is described by the Robin boundary condition, which is expressed

by the following formula:

oT
tA—=h(T-T 1.18
" n(r-T,) (119

Where T is the temperature of the solid boundaries, T.. is the temperature of the surrounding
environment at a distance far from the boundaries, and the constant h, is known as the heat transfer

coefficient.

The plus and minus signs of the left member of equation (1.18) correspond the direction of

the temperature gradient (Figure 1.8).
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— gt =0,

n (outward)

aT ; YV
(inward) 7 _[ _k(Bn),lkh(‘T’ ~To)=0. -

Figure.1.8: Heat transfer by convection surface heat flux boundary conditions .

E. Heat transfer to the ambient by radiation and convection

To model heat transfer via radiation from the boundaries of a medium, a specific boundary
condition is necessary. Assuming a uniform but unknown temperature T1 for the medium, the
boundary condition can be formulated to account for the combined effects of conductive and
radiative heat transfer at the surface. The net heat flux is given by the sum of these two components,

as described by the following expression:

oT
+1 s o (T, =T )N (T~ Tor) (1.19)
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EXERCISES
EXERCISE 1.1

The temperature distribution in along cylindrical tube is:

T (r) =800 +1200r —3000r

Where T is in Kelvin and r is in meter. The cylindrical tube has

inner radius of 25 cm and outer radius of 40 cm,its thermal conductivity is 50 [W/(m.K)

-Find the rate of heat transfer entering and leaving the cylinder.

Solution

T (r)=800+1200r —3000r>

ﬂ =1200-6000r
or

Hence, the rate of heat transfer entering per unit length is:

@ = —/1(2—1- A=-50.(1200—-6000r) x1

oT
¢r:0.25 =-A—| A=
or 0,25

= -50(27.0,25)(1200 - 6000 (0, 25) ) x 1
— 23500[W ]

Similarly, the rate of heat transfer leaving the system per unit length is:

oT

— A
or |4

¢r=o,4 =-1
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$,-04 = —50(27 % 0,4)(1200—-6000(0,4))
=150720[W ]

EXERCISE 1.2

The temperature distribution in a plane wall of 50 cm thick at a given time is expressed by

the relation: T (x) =450 —500x +100x* +150x°

Where T is the temperature in °C and x in meters. The thermal conductivity of the wall

material is 10 [W/m.K].
-Calculate the rate of heat energy stored per unit area of the wall at this instant.

Solution

T (x) =450 —500x +100x* +150%°

(;—T = —500 + 200x + 450x°
X

Heat entering the wall from the face being heated i.e x=0 is

¢|n = _ﬂ’d_T A
dx |,
¢, =—10x1x(-500+ 200x + 450x" )

= —~10(-500) = 5000[W |

x=0

Heat leaving the wall i.e at x=0,5 is:

¢out =-4 d_T A
dX x=0,5
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By = —10x1x (~500 + 200x + 450X )
=-10(-500+100+112.5) = 2875[W |

¢stored = ¢|n - ¢out

Doreq = 2000 —2875=2125W

EXERCISE 1.3

One side of a plane wall is maintained at 100°C while other side is exposed to a convection

environment having T.=10 [°C] and h = 10 [W/ (m? .K)]. This wall has the dimensions of 3x5 m?,

a thermal conductivity of 1,6 [W/(m. K)] and the thickness of 40cm.

-Calculate the heat transfer rate through the wall.

Solution

We have: A=3 (5) =15 m?

The heat transfer rate is:

dT
=-A—A=hA(T,-T
¢ dX ( 2 oo)
or 1,6ﬂ=10(T2—10)
0.4

10
T,-T, = Z(TZ -10)

Or 35T, = (T, +25)

T, = 125 =35.714°C
3.5
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T2

f— 40cm —| T. = 10°C

T, =100°C T,

h=1.0 w/m?k



100 - 35,714)

Thus ¢=1,6(3><5)( —3857.16[W]

EXERCISE 1.4

A large plane wall is subjected to specified temperature (T(0)=T, =80°C)on the left

surface and convection characterised by T, =15°C and h = 24[W /(m?.°C) | on the right surface.

Find the mathematical formulation of the temperature variation, and the rate of heat transfer

for steady one-dimensional heat transfer.
/‘& .
Data: L=0,4m,A=20[m’ | and 2 =50[W /(m.K)] ~ Ti=80°C
A=20m" I, =15°C .
h=24 W/m".°C
L=04m
Solution I
2

dT _ 0 N

dx?

and T(0)=T,=80°C

dT
—ﬂ&: h(T(L)-T,)

1°/ Integrating the differential equation twice with respect to x yields
ar

o
T(x)=Cx+C,

Cl

where Cz and Cz are arbitrary constants. Applying the boundary conditions give

Atx=0:T(0)=C, =T, } C.=T,

e e o e
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2°/ Substituting C1 and C; into the general solution, we get the temperature variation as:

Mg 2

A+hL ' 50+(24x0,4)
— ~26,174x +80

3°/ The rate of heat conduction through the wall is:

¢ = 29T AZ13112A
dx

= (26,174) (50) 20
— 26174[W]
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CHAPTER 2: ONE-DIMENSIONAL STATIONARY CONDUCTION

2.1 INTRODUCTION

The study of one-dimensional (1D) heat conduction is fundamental in thermal engineering,
as it models heat transfer in highly symmetric objects: the plane walls, cylinders, and the spheres
where the heat flow is dominant along a single spatial axis. This process is governed by the heat

diffusion equation.

We consider two main cases: the model without an internal heat source, which describes
simple transfer through the medium, and the model including a source term, which is necessary to

analyze systems with internal energy generation.

2.2 CONDUCTION WITHOUT INTERNAL ENERGY GENERATION

Heat conduction in one dimension simplifies the general heat equation to forms that are
solvable analytically under specific boundary conditions. The choice of coordinate system
cartesian, cylindrical, or spherical depends on the object geometry, such as a slab, a pipe, or a
sphere. The geometry of the system significantly influences the form of the conduction equation
due to the divergence operator taking different forms in each coordinate system. When there is no
internal heat generation, the resulting equation is homogeneous. In contrast, the presence of
internal heat sources introduces a nonhomogeneous term, complicating the solution but offering a
more realistic representation of many physical scenarios. These cases are fundamental for
understanding thermal diffusion in a variety of engineering and physical systems. The resulting
solutions whether transient or steady-state enable the prediction of temperature distributions,

which are critical for thermal design.
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2.3 STEADY-STATE ONE-DIMENSIONAL HEAT CONDUCTION WITHOUT
HEAT GENERATION:

2.3.1. Plan wall

Let’s assume figure 2.1 shows a plane wall of thickness L, extending infinitely in the y and
z directions. To ensure that the mathematical treatment is consistent with the physical behavior,

the following conditions are applied:

oT

. : o T
(1) Conduction only in x-direction = T =T(X) so % po

(2) No heat source = * q.g =0 (3) Steady state = %—I =0

(4) Thermal conductivity is constant 2 =C"

Insulated

"~ .

Gy —» —® qgx

Insulated /

+“— B—»

— X \
Insulated

Figure 2.1: One-dimensional heat conduction in a solid.

The conduction equation in cartesian coordinates then becomes:
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2 2
18—12-=Oor d_-lz-:
OX dx

0 (2.1)
The partial derivative is simplified to a total derivative because the equation depends only

on the single independent variable, x. Subsequently, integrating both sides of this equation results

ar

in: _—
dx

C, (2.2)

A second integration gives: T =C,x+C, (2.3)

Thus, it is seen that the temperature varies linearly across the solid. The constants of

integration can be determined by applying the boundary conditions:

Atx=0 =T=T,

(2.4)

Atx=L =T-=T,
The first boundary condition gives C>=T1 and the second then gives :

T,=CL+T, (2.5)

. . T,-T

Solving for C; , we find: C, = -2 - L (2.6)
The heat flux is obtained from Fourier’s law:
Therefore, p=—-1 IE [Tl _a T (2.7)
Multiplying by the area gives the rate of heat conduction:
¢=1T1 sz A (2.8)
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Composite wall in series

Considering a multilayer wall (figure 2.2), the presence of several materials necessitates an

analysis that takes into account the distinct temperature gradients shown in the three materials.

A
\ p
Temperature
B L profile
q Y g R 2 .
—_— —_— O— MMM — O—— AN — O—ANN—O
T, o T, . es T,
2 L . -
1 3 % 2 A
s
1 2 3 4

Figure 2.2: composite wall in series

The steady-state heat flux can then be expressed by:

¢:_,11ﬂA:_12T TA %T TA
e

1 e2 e3

The thermal resistance by definitionis: R, = % :

T,-T, T -T, T -T, T -T,
Rthl Rthz Rth3 Rth—eq

Therefore ¢ =

€

ﬂl A th2 Rth3

Where Ry, =

23A

And Ry ., =R+ Ry, + Ry

th—eq —
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Composite wall in parallel

Consider the composite wall shown in figure 2.3, which is composed of two parallel layers.

The associated thermal resistance network can be represented by two parallel resistances, as

illustrated in the flowing figure

Insulation
yd
4, — ® -“!_1_
f =T
D 4
\ .
| . |
P —
- Ry, @D
.f] - ¢, e
P=gy + ¢

Figure 2.3: composite wall in parallel

Since the total heat transfer ¢ is the sum of the heat transfers through each individual layer

(¢, and ¢, ), the total heat transfer relationship is given by :
(T.-T,)
= (2.13)

T,-T, T,-T 11
_ =L 2412 (T T, _
L T {mfﬁmj Ry

1 1 1 1 1)
= + SORy eq=|=—+—
Rth—eq Rthl Rth2 Rthl Rth2

(2.14)
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2.3.2. Radial geometry

Radial heat conduction through a cylinder

Consider a long cylindrical geometry (figure 2.4) with an inner radius Ry and an outer radius
Ro, having a length L. Due to its significant length, we can neglect heat losses from the ends
compared to the radial heat transfer. The inner and outer cylindrical surfaces are maintained at

uniform temperatures Ty and Ta.

14215

F 3
-
.

Figure 2.4: Steady state heat conduction through a cylinder.

The general heat conduction equation in cylindrical coordinates is given by:

T 10T 18T &T q 1aT

—t——t— +—+t—= 2.15
o’ ror r’o0® ot A adt (219

Assumptions
-Heat conduction is only in radial direction.

-There is no heat generation within the cylinder.

-Steady state conditions i.e. temperature variation with respect to time is zero.
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-Above equation takes the form .

2:
or %(ri—nzo (2.17)

The boundary conditions applied are:
Atradiusr=R:, T=T:
Atradiusr=Rz , T=T:

Integrating equation 2.17 twice, we get :

T(r)=C,Inr+C,

(2.18)
Using the boundary conditions
Atr=R,T=T, T,=C,InR +C, (2.19)
Atr=R,, T=T, T,=C,/InR,+C, '
Hence
T,-T
C,=—1—2 (2.20)
In
RZ
C,=T,- T,-T, InR, (2.21)

Substituting the value of C1 and C; in equation 2.18, we obtain:

38



LNy

TN 1
In R| R
Rl

So, the rate of heat transfer is:

¢:_,1d_TAr :_lﬂ(le

dr In(sz r
Rl

T()=

where A =2zrL

Therefore ¢= isz

B

The thermal resistance in this case is: R, = 1 In Ry
27AL R,

Multi-layered cylinders and spheres

For three cylindrical resistances in series (figure 2.5)

R = Rthl+ Rth2+ Rth3

th—eq

Where R, =

24l " 22 ™ 24lx
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(2.23)
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T,
w’\.\.* W A ’J.-'“w ‘\,—\-ﬂ--ﬂ-g-x—¢> ¢
\I 1 ;I 3

Figure 2.5: The thermal resistance network for heat transfer through a composite cylinder.

The rate of heat transfer is:

¢:[T1—TZJZ(T2—T3] [T Tj ( T,-T, j (Tl—T4] (2.28)
RIhl RIhZ RthS Rthl + R1h2 + RthS Rthfeq

Combining the convection (internal and external) conditions, We obtain:

1 1
Rth—in = ’Rth—out = (229)
hzD,L h,7D,L

Tool — TooZ j (2.30)

Rth—in + R1h—1 + Rth—Z + Rth—3 + Rth—out

Then ¢=[
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Radial heat conduction through a sphere .

Consider a quarter spherical section represented in figure 2.6.

T,
dr
T, ¢
— T =
| r, |

Figure 2.6. Radial heat conduction-hollow sphere.

The heat equation in this case is expressed by:

%g[rz g) =0
r°or or

Hence rzﬂzc1 Or d—T:%l
or dr r

. . . . C
Integrating this equation, we obtain: T=——2+C,
r

For the boundary condition: T (r = Rl) =T, and T (r = Rz) =T, ,we get:

T1:—%+C2
T2=—&+C2
RZ
Therefore :
B 1 1 _T,-T,
T TZ_C{R—2 —l] Or Cl_i_i
R, R
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Am,cg:n+9:n+n_n-i
R~ 1 1R

! 1
R, R

Substituting in equation (2.33), we obtain:

o L-T, 1 T,-T, 1
T = i_ir”“i_iRl
R2 Rl RZ Ri

The thermal resistance in this case is: L i—i .
A7A

Conduction through composite sphere

For three spherical resistances in series (figure 2.7)

ra AL q _
7 o Hem T Repa T Rena T
& AP PP £ AMPMAG e AP A AN £
r/_:_ 1 ) 1 1) 11
A L l/l'l’? M/ (;"1 Ry
T 4dr 4dr Adm

Temperature
distribution

7

Figure 2.7: Conduction through composite sphere

th-eq — Rthl+ Rth2+ Rth3

R, R R, R R, R
Where R, =~~—2, R, ,=~2 3 R =~3 %/

VY A "3 Ao

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)



The rate of heat conduction in this case is given by :

¢= (T1 _TzJ — (Tz _TSJ _ [Ts _T4J — L-T,
Rthl Rthz Rths Rth—eq

T,-T, CT,-T,

ClTi L a1 (1 1y, 11 1) R
474\ R, R,) 474\ R, R,) 4zi, (R, R,

Combining the convection (internal and external) conditions, we obtain:

1 1
Riin = 7—<7 Rivow =77~
hzD, h,zD?,
Then ¢ = ( Ty =T j
Rth—in + Rth—l + Rth—z + Rth—3 + Rth—out

24  CONDUCTION WITH INTERNAL ENERGY GENERATION

(2.41)

(2.42)

(2.43)

(2.44)

Many applications in the field of heat transfer involve internal heat generation, such as in

electrical conductors, nuclear reactors, and chemical processes. In this study, we focus on one-

dimensional systems, where the temperature distribution varies as a function of a single spatial

coordinate.

A. Steady state radial heat conduction in plan wall

Consider a plane wall of thickness 2L, as illustrated in figure 2.8, with large dimensions in

the other directions. This geometric configuration justifies the assumption of one-dimensional heat

transfer along the x-axis. The wall is subject to a uniform internal heat generation rate per unit

volume g, and its thermal conductivity A is assumed to be constant throughout the material.
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| § = heat generated per
unit volume

S
’
4
u

,;
SO
AR

=

/

Figure 2.8: One-dimensional conduction problem with heat generation.

The differential equation that governs the temperature distribution is:

4T q
EJF%:O (2.45)

For the boundary conditions, we specify the temperatures on either side of the wall, i.e.,

T=T atx=xL (2.46)

w

The general solution of equation (2.45) is

T(x):—% X’ +Cx+C, (2.47)

Since the temperature is equal on both surfaces of the wall, the constant of integration C:

must be zero C, =0. The temperature at the wall's midplane (x=0) is defined by To. According to

equation (2.47), we can obtain C, =T
The temperature distribution is therefore.
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T(X) T, =20 % (2.48.9)

24
For x=L, we have: T(x=L)=T, =T, —% L2 (2.48.b)
Therefore:
T-T, (xY
0 :(_J (2.48.c)
T,-T, L

This parabolic temperature distribution allows us to determine the midplane temperature,
To, by applying the principle of energy conservation. At steady state, the total rate of heat

generation within the wall must be equal to the total rate of heat loss from its surfaces.

Consequently:  -24 z—T A=2AL q (2.49)

L

Where A is the cross-sectional area of the plate. The temperature gradient at the wall is

obtained by differentiating equation (2.48.c):

dT 2X 2

ol =0Tz = -To)¢ (2550)
L x=L
2 .
Then  —A(T,~T,)==qL (2.51)
So T, =T, + % 2 (2.52)

The equation for the temperature distribution could also be written in the alternative form
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2
: _iw =1—G) (2.53)
—

w

B. Steady state radial heat conduction in cylinder with heat generation

Let's consider a cylinder of radius R undergoing to uniform heat generation g and having a

thermal conductivity A. Its outer surface is exposed to convection characterized by h and T

To analyze the heat transfer, we perform an energy balance on a small annular volume
within the cylinder, located between radius r and r+dr, considering a unit length of 1 m. This

balance is expressed as:

heat conducted inlet + heat generated — heat conducted outlet =0

Therefore i[rd—Tj + g r=0 (2.54)
dr\_ dr) 24

Integrating after separating variables

T 4,.C

ar 24 (2.55)

T(r)=—%r2+c1 Inr+C,

This represents the general solution to the cylindrical problem with
the heat source. The values of the constants C; and C> are determined

by applying the appropriate boundary conditions.

For solid cylinder: The boundary conditions are:
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Atr:O,d—Tzo
dr

Atr=RT=T,

The first condition yields: C, =0

The second condition yields: C, =T, +% R?

Therefore T-T, = i(R2 —~ rz)
41

The maximum temperature, Tmax IS Obtained for r=0, it is equal to:

Tmax _Tw = i R2
42

Therefore -1, =1—(r/R)2
T T

max w

The temperature distribution within the cylinder varies parabolically with the radius .

Taking convection into account, heat generation unit length is q.7R?.1

This is absorbed by the fluid in the outside area 27R.1

Equation (2.58) reducesto T —T, = i(R2 - r2)+ﬁ
42 2h

iRZ_'_qR

Equation (2.59) reducesto T, =T+ -—
42 2h
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(2.57.b)
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(2.59)

(2.60)
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C. Radial conduction in sphere with heat generation

Applying the energy equation to a thin layer of thickness dr positioned at radius r, we obtain:

a2 9T L 4z qdr + 40202 d—T+i(4Mr2 ar
dr dr dr dr

2
i(rzd_Tj+£:0
dr dr A

Integrating this equation gives :

amr__q,..6

dr 31 r?

Atr=0, OI—T=0
dr

Hence: C, = % r’=0

Therefore

__4, +C,

Atr=R:T =T,
Thus C, =T, + 1 R?
62

Hence: T -T, :i(R2 -1r?)
64

The maximum temperature is calculated for r=0
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(2.64)

(2.65)

(2.66)
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TO _Tw = Tmax _Tw = i R2 (269)

64
Therefore
T-T 2
Y =1-(r/R 2.70
Tmax _TW ( ) ( )
T-T, T,-T
Therefore 1— ¥ -0 =(r/ R)2 (2.71)
TO _TW TO _Tw
Considering convection, the energy balance at the outside is .
4 s 2
E;rR q=4zR*h(T,-T,) (2.72)
T -1 +3R (2.73)
3h
The equation (2.52) can be written as:
T—Twzi(Rz—r2)+m (2.74)
61 3h
The equation (2.74) can be written as
-,
_t -9R° gR 2.75)

"™ 64 0 3h

Equation 2.70 shows that the temperature distribution is parabolic. The rate of heat transfer

at any cross-section can be determined using:

6=-290 A (2.76)
dr
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2.5 EXTENDED SURFACES (FINS) .

Extended surfaces, or fins, are used to improve heat transfer by increasing the surface area
available for conduction and convection. They are widely used in applications requiring efficient

heat dissipation, including heat exchangers, radiators, and electronic cooling systems.

PR

(b)

PR ER

Figure 2.9. Schematic of different types of fins.

26  GENERAL THERMAL ANALYSIS

The heat transfer analysis of extended surfaces in the simplified configuration (figure 2.10)
assumes a uniform cross-sectional area along the direction of heat transfer. A fin is used to increase
the surface area for heat dissipation from a primary surface to the surrounding fluid. Heat is
transferred by conduction from the base into the fin and is then dissipated to the surrounding fluid
by convection from the fin's exposed surface. Under steady-state conditions, the energy balance

for the fin is expressed as :
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dqeony = h Pdx (T —T_)
( /(
| &
’ |

9 x - > xt+dx /
Z
k} - IA /
— L -

Base

\

Figure. 2.10. Pin fin

Heat conducted into the fin at its base- Heat convected from the fin surface up to a specific

section x=Heat conducted out of that section x into the rest of the fin material.

The primary quantities we need to determine are:

(i) the temperature distribution

(i1) the total heat transfer rate.

This process shows that both temperature and heat flux change continuously along the length
of an extended surface (fin). The main goal of analyzing a fin is to determine two primary

quantities: Temperature distribution along the length and total heat transfer rate.

The parameters taken into account in the analysis are : T.. the fluid temperature, Ty, the base
temperature, A thermal conductivity of the material, (which is considered as constant), h
Convective heat transfer coefficient, A the sectional area perpendicular to the heat flow direction,

P perimeter exposed to the fluid, direction of convection.
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To analyze the temperature distribution of a fin, we consider a small, infinitesimal control
volume of length dx at a distance x from the base as illustrated in Figure 2.6. Applying the principle
of energy balance for steady-state conditions, we find that the rate of energy entering the control
volume must equal the rate of energy leaving it.

Rate of heat conduction into the element at section x - the rate of heat conduction out of the element

at section x + dx -the rate of heat convection from the element's surface = 0.

a9l iAd—T+i£—iAd—Tjdx —hPdx(T -T,)=0 (2.77)
dx dx dx dx

We assume that the thermal conductivity (A) and cross-sectional area (A) remain constant,

and that the convective surface area of the element is P.dx .

d’T hP

In order to solve the equation, two new variables 6 and m are introduced.

d’T _d%
0= (T —TOO) SO, W:W (279)
m— % (2.80)
. d’o
The equation reducesto —--m“@=0 (2.81)
dx’

The general solution for this equation is

6=Ce™ +C,e™ (2.82)

52



The values of the constants C1 and C> are determined by the applied boundary conditions.
There are four distinct sets of boundary conditions we can consider, and each set yields a unique

pair of values for C; and C..

Case 1: Long fin configuration:

The boundary conditions are:
X—>w,6=0 and forx=0,6=T, -T,
Thus 6=Ce™ +C,e™ (2.83)

From first boundary condition, C1= 0, otherwise 6 will become infinite which is not possible.

6=Ce™

x=0,0=T,-T,

T,-T,=Ce™=C,s0 C,=T,-T, =6, (2.84)
9% = I.):TFZ =e™ (2.85

In this case the variation of temperature is exponential.

Case 2.Short fin end insulated:

Atx=0,0=6,=T,-T_,Atx= L,? =0 as the surface is insulated.
X

From the first condition 9:(C1emX + Cze‘mx)leads to
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6,=C, +C,

3—5 = m(-Ce™ + C,e™)=0

mL _ -mL — 2mL
Ce™=Ce ™ OrC,=Ce

Using equations (2.70.a)and (2.70.c) §,=C,+Ce*™ Or C,= %

. . (7 (7
Using equation (2.70.c) and (2.71.a) C, :ﬁe2mL = Mﬁ
0 emx e—mx
re LT —2mL
g, 1l+e l+e

em><e—mL e—mxemL e—m(L—x)em(L—x)

- emL +e—mL + emL +e—mL - emL +e—mL

00

T,-T cosh(mL)

o0

T-T, cosh[ m(L—x)]

1+e*m™

(2.86.9)

(2.86.b)

(2.86.c)

(2.87.a)

(2.87.h)

(2.88)

(2.89)

Here, we are neglecting heat loss by convection from the fin tip. To mitigate the resulting

error, the fin length can be effectively increased by AL =e/2 A, where e is the fin's thickness. For

fins with a circular cross-section, this correction becomes AL=D /4.
The temperature ratio at the extremity is :

T -T 1

00

T,-T B cosh(mL)

0

Case 3. Short fin with convection, h, at the tip.

The boundary conditions are
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Atx=0,0=6, Atx= L,—/”tz—T=hL(TL—Tw)
X

The calculation is more complex. The resulting equation is:

cosh(m(L- x))+n:bsinh(m(L—x))

(2.91)

_ h .
= h(mL)+—t-sinh(mL
cosh(m )+m./13|n (mL)

At the tip, the temperature ratio is:

T -T, 1
= . (2.92)
T —T. cosh(mL)+m—L/15inh(mL)

Case 4 Specified end temperatures

At x=0,0=T,, T where Ty is the temperature at end 1

At x=L,0=T,—-T_where Ty is the temperature at end 2

In this case,.the resulting solution is :

T-T, _ [(Ty,=T,)/(T,,—T,) |sinh(mx)+sinh(m(L -x))
T, —T sinh(mL)

(2.93)

Table 2.1 presents these boundary conditions along with the resulting temperature distribution for

each case.
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Table 2.1 Temperature distribution in constant area fins for different boundary conditions

m=./hp/AA.

Boundary condition and Temperature distribution
general nomenclature
1.Long fin (T-T)H)/(T,-T,)=e™
x=0,0=T,-T,
2.Short fin end insulated T-T, cosh[m(L-x)]
x=0,0=T, -1, T,-T,  cosh(mL)
X=L, a9 =0
dx
3.Short fin (convection at the h .
tip h, considered) T-T, cosh(m(L - x))+m—.L/13|nh(m(L— X))
x=0,0=T,-T, -1 cosh(mL)+r:L/13inh(mL)
x=L,-290 =h (T-T,) '
dx |,

4.Fixed end temperature T-T, [(To,—T.)/(T,—T,)]sinh(mx)+sinh(m(L-x))
X=0,0=Tp, ~T, T,-T, sinh(mL)
x=0,60=T,-T,

2.7. PERFORMANCE OF FINS

Heat Transfer Rate from a Fin

The general expression for heat transfer from a fin depends significantly on the tip boundary
condition. For the common case where the fin tip is insulated (i.e., no heat loss from the tip), or if
the fin is long enough that the tip temperature is nearly equal to the ambient temperature T, the

heat transfer from the fin is given by .

Qqn = VhAP.A(T, —T, )tanh (mL) (2.94)

For an infinitely long fin:

Q;, =vhiP.A (Tb -T,) (2.95)
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Fin Effectiveness

Fin effectiveness ¢, measures a fin's ability to enhance heat transfer by comparing the heat
transferred from the fin to the heat that would be transferred from the same area if there were no

fin.

3 Actual heat transfer rate from the fin
Heat transfer rate from the basearea if nofinwas present

(2.96)

Efin

Fin Efficiency
Fin efficiency is defined as the ratio of the actual heat transferred by a fin to the maximum
possible heat transfer if the entire fin surface were at the base temperature (Tp). Mathematically, it

is expressed as :

_Actual heat transfer rate from the fin (2.97)
"0 =\ deal heat transfer rateif entirefin was at T, '

Therefore

Q fin

hAg (T,-T.) (2.98)

Tiin =
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EXERCISES

EXERCISE 2.1

A boiler furnace with vertical walls measuring 4m x3m (total height 3m) is constructed with a
three-layer composite wall. The wall layers, starting from the interior, are:

-Fire Brick: Thickness L1 of 25 cm and thermal conductivity A1 of 0.4 [W/(m. K)]

-Ceramic Blanket Insulation: L2 of 8 cm and thermal conductivity A2 of 0.2 [W/(m. K)]

-Steel Protective Layer: Lz of 2 mm and thermal conductivity Az of 55 [W/ (m. K)].

The temperature of the interior surface of the fire brick is measured at 600°C, and the
temperature at the outer surface of the ceramic blanket insulation is 60°C.

1°/Determine the total heat loss rate through the vertical walls of the furnace.

2°/Determine the temperature at the interface between the fire brick and the ceramic blanket
insulation.

Data: Area of rectangular wall is 1b=12[ m |,

| =4[m],b=3[m],h=3[m] ~ -
= 25 cm \ 8 — Temperature
For Fire brick & [em] , —~ L pone
Ay =0,4[W /(mK)] N e o
L, =0,2[cm] 1|2 |3
for Steel
A, =54[W /(m.K)] N

L, =8[cm]
2,=0,2[W /(m.K)]
T, =600[°C]and T, = 60[°C]

For insulation{

1°/Determination of heat transfer rate

AT

We know that, ¢ =

h—eq
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Where: AT =T, -T,

And Rth —eq — R1h1 + Rmz + RthB

L, 025 .
— =27 _—0.0521[°C /W
R = ALA  0,4x12 [ ]
L, 008

A

= = =0.0333|°C /W
R = S =00333[C /W]

A, 0,2x
0,002
54 x12

Ry, = f = —0.0000031[°C /W]

T,-T,
Rthl + Rth2 + thS

600 - 60
0,0521+0,0000031+0,0333

¢=

o=

S0 ¢ =6320,96[W |

2°/ Determination of the temperature drop across the steel layer (T3-T4)

¢ = L,-T

Rins
T,-T,=9.Rys
=6320,96(0,0000031)

Thus T,-T, =0,0196°C
EXERCISE 2.2

A composite wall, detailed in the figure below, is constructed of five materials (A, B, C, D,

and E). Sections B and C are arranged in parallel, while sections A, the B-C combination, D, and

E are in series.
B
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The thermal conductivities and cross-sectional areas for each section are given in the flowing

table:
Section A B C D E
Thermal conductivity 50 10 6,67 20 30
[W/(m.K)]
Area (m?) 1 05 | 05 1 1

If the temperature entering at wall A is 800°C and leaving at wall E is 100 "C.
1.Calculate the heat transfer through the composite wall.

Solution

T. =800°C and T, =100°C

Solution

We know that:

(AT)
Q — overall
2 Ra
LA
ﬂ‘A AA

Rthl = RthA =

The walls B and C are in parallel Then, 1 = 1 1 = R + R

+
Rth 2 RthB R1hC RthB RthC

Ry, = _RugRic ,Where R, = Ly and R, = Lo
RthB + RthC A’BAB )’C'Ab
L
Rth3 = RthD = ﬁ“DZ‘D
L
Rth4 = RthE = /’LEZE

1
=R,=——=0,02(K/W
Rt =R = 552 = 0,02(K /W)

60



1 1

Ry = ———=0,2[°C /W] and R,,. = ————— =0,2969[°C /W
" 10%0,5 | ] "¢ 6,67x0,5 [ ]
Ry, = —eree_ 0.2x0.299 g 41qg70c ]
" Ry +Rye 0,240,299
Rthsththi: L =0,05[°C /W]

oA,  20x1

L 1
Rth4 = RthE = 1 E =
A 30x1

—0,0333[°C /W]

Hence
¢:TL_T° _ 800-100 =3137,61[W]
R 0,02+0,1198+0,05+0,0333
- th
EXERCISE 2.3

A hollow cylindrical wall is composed of a material with a thermal conductivity of 70

W/m.K This cylinder has an inner diameter D1 of 5 cm and an outer diameter D> of 10 cm. The

inner surface is maintained at a uniform temperature T:=300K and the outer surface is maintained

at a temperature T, of 100

1.Determine the temperature Tr, at the radial location midway between the inner and outer

surfaces.

2.Determine the rate of heat transfer per unit length through the cylinder.

Solution

T1 _Tz

(2)

We know that: ¢ = 27AL
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Hence

_ 6,28.(1).(70)(300-100)

5
In| —
25)
2,5+5

At half way between R; and Rz radius, R, = 5 =3, 75[cm] since ¢ remains the same

¢ —126868.6[W ] =126.86 [KW ]

under steady state conditions

Therefore
T, =T,-117 = 183[°C]
EXERCISE 2.4
A steel pipe transports steam at an internal temperature of 260 °C. The pipe has an inner

diameter D1 of 100 mm and a wall thickness e1 of 7 mm.

The pipe is insulated by two concentric layers:

1. A primary layer of glass wool with a thickness e, of 40 mm.

2. An outer layer of asbestos felt with a thickness ez of 60 mm.
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The surrounding ambient air temperature T is 20 °C.

Thermal Properties are given in the following table

Parameter Symbol | Value | Unit

Inner Convective Heat Transfer Coefficient Nin 550 W/m2-K
Outer Convective Heat Transfer Coefficient Nout 15 W/m2-K
Thermal Conductivity of Steel Asteel 50 W/m-K
Thermal Conductivity of Glass Wool Aglass 0.09 W/m-K
Thermal Conductivity of Asbestos Felt Aasbestos 0.07 W/m-K

Calculate:

1/Rate of heat loss per unit length of pipe.

2/Temperature at each x section of the pipe.

Solution

Equivalent electrical circuit is given by :

1

In(R,/#,)

h(2rR L)

(2xd.L)

In(Ry/75)

In(R, /75)

(274,,2)
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1

By (2R L)




¢_ Tool_TcoZ
1 In(R,/R,) In(R,/R,) In(R,/R,) 1
+ + + +
h(2zRL)  (274L)  (274,L)  (2#2,L) hy(22R.L)
(260—20)27z><1
1000 In(57/50) In(97/57) In(157/97) 1000
+ + + +
550(50)  (50) (0,09) (0,07)  15(157)

=50,50[W ]
_ Tool _Tl
$= 1
h (27R.L)
50,5= 260-T,
0,064

Hence T, =-50,5(0, 064) +260 =256, 77°C

T,-T, In(R,/R,)
=2 T T g2 U
Now, we have ¢ in(R, /R , =L —¢ (27A.0)
(272.L)
Thus T, = 256,77—50.5M =256.74°C
(1007)

Now, we have for next junction:

T,-T, In(R,/R,)
=< ° :T 7, P S .
PThRIR) T 2w
(274,,L)
T, =256,76-50517/57) _ 509 24[ec]

(0,187)

Now, we have for next junction
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T,-T, In(R,/R;)
PThRIR) T T L)
(272,,L)
In(157/97)

T, =209,29-50.5 =153,92[°C]

(0,147[)
EXERCISE 2.5

A hollow copper conductor (D1=13mm and D>=50mm) carries a current density of 5000
Alcm?. The outer surface is fixed at 40°C, and the inner surface is adiabatic.

Data: pe = 2.10° Q.cm and A=381 [W/m.K]

1.Find the location and magnitude of the maximum internal temperature.

Solution

Heat generation rate per unit volume,

4 2
q= I’R _ (5000.10%A) L (5000.10*)" 2.10°° =50.10°[W / m*]
AL AL A

The differential equation for one-dimensional heatflow with heat generation in cylindrical

coordinatesi(rd—Tj +q_.r =0is
dr A

Integration of this equation gives

L] 2 L]
rd_T+q'r +Clzo S0 d_T+£+&:O
dr 24 dar 241 r

Further integration gives the temperature distribution equation as
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2

74T
42

+C,Inr+C,=0 *)

The constants of the integration Cy and C> are determined from the boundary conditions,

which are:

For r=R1, ?j—T =0 as no heat is removed from the inner surface.
r

Forr=Rz2, T =T,

The first boundary condition gives

Inserting value of constant C; in the temperature distribution equation, we get

T2 o p2
T+—q'r +—q'R1 Inr+C,=0
44 24

The second boundary condition give

2 2 ‘D2 .
T,+3R°_GR e e —0orc, = 3R R, 1, R
4 22 2 4%

2

VA C “q.R? _ -50.10°
Y22 2(381)

(6,5.10°)" =—2.772[°C /m]

D2 D2
c, =R R, -1, - 4%
24 42

- —70.82[°C]
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Substitution of the constant values and other parameters in equation (*) gives
T +0.0328r> - 2.772Inr—70.82=0

The maximum temperature is at the inner surface (r= 6,5.10° m) and is

T= —0.0328(6,5.10‘3)2 +2.772In(6,5.10"°) +70.82 = 55,47°C

The heat transfer at the outer surface is

¢ = —AHMT A

r=R,

Therefore ¢ =91542[W ]

EXERCISE 2.6

A hollow spherical shell is constructed from a material with a thermal conductivity A of 30
(W/m.K). The sphere has an inner diameter Dy of 12 cm and an outer diameter D> of 21cm. Heat
is generated uniformly within the solid material at a rate ($ of 5.108(W/m?®) . The inner surface is
perfectly insulated (adiabatic), and the outer surface temperature is maintained at a constant

temperature of 360°C

1.Determine the maximum temperature Tmax achieved within the spherical shell under

steady-state conditions.

Solution

S
i(rzd_T}Lq.r =0
dr dr A
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Integrating this equation twice gives:

At r=Rj,the heat flux is zero, therefore . :l—-: =0

_9R G
31 R} 31
Atr =Ry, T(r=Rz) = T2 = 360 °Therefore

=0 Hence C, =

‘D2 D3
C2 :T2+&+ﬁ
61 3R,

So, the temperature distribution is

2 s ‘D2 - D3
T(r):_q.r _q.R +_|_2+q.R2 +q.R1
64  3Ar 64  34R,

The maximum temperature is reached at (r= R1=6.102 m)

Tow =T (r=R,)=480.54°C

max

EXERCISE 2.7

A long cylindrical shaft (60 mm diameter) acts as an extended surface (fin) dissipating heat
generated by an adjacent bearing. The temperature at the base of the shaft (the shaft end near the
bearing) is maintained at 60°C above the ambient temperature T... The heat is transferred from the

shaft surface to the surrounding air via convection, with a heat transfer coefficient of 7 [W/m2.K].
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The shaft material has a thermal conductivity of 60 W/(m.K).Assuming the shaft can be modeled

as an infinitely long fin,
1.Determine the mathematical expression for the temperature distribution along the shaft's axis.
2. Determine the total rate of heat transferred from the shaft to the ambient air.

Solution

The temperature distribution is given by:

-1 =e ™ Here m= h—Pso m= hzD =\/4h AN m= i=2,79and
T-T, AA ,7D* \NaD 60(0,06)

T,-T,=60"CHence T-T, = 60e 279

The rate of heat rejected from the entire surface area of the shaft is :

¢fin :\/hpﬂ'A: (Ts _TOO)

OF ¢hy, =+/7x7x0,06x60x (7 /4)x(0,06)" x60 = 28,39[W].
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CHAPTER 3 TWO-DIMENSIONAL STATIONARY CONDUCTION
3.1 INTRODUCTION

Two-dimensional heat conduction involves temperature variation in two spatial directions
and is governed by the 2D heat equation. Analytical solutions are possible for simple geometries
and boundary conditions using methods like separation of variables. However, complex domains

often require numerical approaches such as finite difference or finite element methods.

3.2 ANALYTICAL SOLUTION OF TWO-DIMENSIONAL HEAT CONDUCTION
PROBLEMS.

Consider a long rectangular bar (infinite in the z-direction), as illustrated in Figure 3.1. Three
of its lateral sides are maintained at a constant temperature To. The temperature along the fourth

side (y=H) is given by an arbitrary function f(x).

yl\
T

To To

Y

To w

Figure 3.1 A rectangular section bar with given thermal boundary conditions .

We know that the equation of heat transfer in steady state without heat generation is

expressed by:
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T 07T
o+l = (3.1)
ox~ oy

Using 8 =T —T,, the Laplace equation (3.1), is transformed to:

2 2
99,99 (32)
ox~ oy

The boundary conditions are :

Atx=0,6=0Aty=0 6=0, 33
Atx=W, 0=0,Aty=H, 0= f(x), (3.3)

The solution of equation (3.2) is obtained by using the separation of variables method, which

relies on the assumption that the solution can be expressed as a product of functions. This yields:

o(x.y)=XY (3.4)
Where X=X(x) and Y=Y (y).
Substitution in equation (3.2) gives
2 2
_1dx _1dY @s)
X dx® Y dy

Because x and y are independent variables, the left-hand side and the right-hand side of
equation (3.5) are independent of each other. Consequently, for the equation to be true, both sides

must be equal to a common constant. Let's denote this positive constant as K2. This gives us:

d’X 1d%  ,

1
X dx Y dy? (36)
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Thus, we get two ordinary differential equations as:

‘;()2( +K2X =0 37)
‘;;Z _K2Y =0 (3.9)
The value of the constant K is to be determined from the given boundary conditions.
The general solution of equation (3.7) is
X =[C, cos(Kx)+C,sin(Kx)] (3.9)
and that of equation (3.8) is:
Y =[C,exp(—Ky)+C,exp(Ky)] (3.10)
Substitution in equation (3.4) gives [20].
6(x,y)= XY =[ C,cos(Kx)+C,sin(Kx)][ C,exp(—Ky)+C, exp(Ky) | (3.11)
Applying the boundary conditions, we find :
At y=0, [ C,cos(Kx)+C,sin(Kx)](C,+C,) =0 (3.12.a)
At x=0, C,[ C,exp(—Ky)+C,exp(Ky)]|=0 (3.12.b)
(3.12.c)

Atx=W, [C,cos(KW)+C,sin(KW)][C,exp(—Ky)+C,exp(Ky)]=0

Equations (3.12.a) and (3.12.b) give
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C,=-C,andC, =0

Substitution in equation (3.12.c) gives:

C,C, sin(KW)[ exp(Ky)—exp(-Ky) |=0 (3.13)
Equation (3.13) requires that:

sin(KW)=0 (3.14)
Therefore, K = ﬂwn , Where n is a positive integer.

By substituting values of constants C1 to Cs and K in equation (3.11), we get .

0(x, y)=T—T0=2Cnsin(nv7\[/)(}sinh(nv7\[/yj (3.15)

In this form, the exponential term has been replaced by sinh (nmy/W), and the constants C»
and C4 have been combined. The complete solution to the differential equation is obtained by

summing the individual solutions for each value of n, extending to infinity.

The fourth boundary condition gives
- . (X)) . nzH
f(x)=)> C, sin| — |sinh| —— 3.16
(=25, [Wj (W j (3.16)

. (nzH e . _ .
The terms C, sinh (\Tv—j are identified as the coefficients of the Fourier sine series for the

function f(x) in the interval O<x<L. In other words:
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Cnsinh($j=\%\lvf f (x)sin(%)dx (3.17)

11225 L T osinl %V ax [sin[ 27X \sinn [ D7Y
o(xy)=T TO—WZ Sir]h(r]7[|_|]_(|:f(x)sm( W jdx sm( W jsmh[ W j (3.18)

The temperature distribution is represented in figure 3.2. In this figure, the heat flow lines

(shown as dashed lines) are always perpendicular to the lines of constant temperature, known as

isotherms (shown as solid lines).

Figure. 3.2 Isotherms and heat flow lines in a rectangular plate.

3.3 FINITE DIFFERENCE ANALYSIS OF CONDUCTION

In modern heat transfer analysis, numerical methods like the finite difference method and
finite element method are the most common approaches for solving complex conduction problems.
We'll now introduce the basic concepts of the finite difference method and its application to heat

conduction.
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3.4 ENERGY BALANCE METHOD.

The energy balance method is an alternative and often more intuitive approach to developing
finite-difference equations, especially for problems involving multiple materials, internal heat

generation, or complex boundary geometries.

The key of the finite difference method is applying the conservation of energy principle to a
control volume surrounding each nodal region to derive its finite-difference equation. To handle
the uncertainty of heat flow direction, we assume, for the purpose of formulation, that all heat

transfer is into the control volume associated with a given node (m, n).

For steady-state problems with heat generation, the energy balance applied is :

E,+E, =0 (3.19)

We consider two-dimensional steady-state heat conduction problem, the energy balance for
a control volume enclosing an interior node (m, n) as shown in figure 4.5, is based on the principle
of energy conservation. In this case, energy is exchanged through conduction with the four
adjacent nodes (left, right, top, and bottom) and is balanced by internal heat generation.

Consequently:

4

ey +A(BXAY.2) =0 (3.20)

i=1
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m,n+ 1
T L ]
Ay _l _T
L .—-—I [ |-|—. Ay
m—1,n | m, n m+ 1, n l
!
m,n—1
-— Ax —»=

Figure 4.5 Conduction to an interior node from its adjoining nodes .

For a unit depth and under the assumption that heat conduction occurs only along paths

parallel to the x and y axes, the heat conductionrate ¢, . between a neighboring node i and the

central node (m, n) can be determined from Fourier's law.

The rate of heat transfer by conduction from the adjacent node (m—1, n) to node (m, n) is

given by:
T ..-T
=A(Ay.1)-mtn min 3.21
¢(m—1,n)a(m,n) ( y ) AX ( )
; ; : Tm—ln_Tmn : oo
In this expression, the area for heat transfer is (Ay-1), and the term A— is the finite
X

difference approximation of the temperature gradient, 0T/0x. The remaining conduction rates from

the other adjacent nodes into the central node (m,n) can be formulated analogously [5]:

Tm+ n _Tm,n
¢(m+l,n)—>(m,n) =1 (Ayl) _m+ln mn

AX
Tm n+ _Tm,n
¢(m,n+1)—>(m,n) =4 (AXl)lA—y (322)
Tm,n—l _Tm,n
¢(m,n—1)a(m,n) =2 (AX1)A—y
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When using the finite difference method, heat transfer rates are systematically calculated by
subtracting the temperature of the central node, Tmn, from the temperature of its adjacent neighbor.
This sign convention is a direct consequence of the initial assumption that all heat flow is directed
into the control volume of node (m, n). By substituting the conduction rate expressions from the
four adjacent nodes into the energy balance equation and assuming a uniform grid spacing

Ax = Ay, the governing finite-difference equation for an interior node with heat generation

becomes:

T

m,n+1

+T

m,n-1

+T

m+1,n

2
PR (L9 N S (3.23)

m-1,n m,n
A

In the absence of internal heat generation q =20, the derived finite-difference expression for

+T

m-+1,n

+T . —4T =0

m=1n "~ F'mn

an interior node reduces to: T +T

m,n+1 m,n-1

It's important to remember that a finite-difference equation is required for each node with an
unknown temperature. For nodes located on insulated or convective surfaces, the finite-difference
equation must be formulated specifically for that node by directly applying the energy balance

method.

To provide a more detailed illustration of the energy balance method, let's analyze the
specific case of the node located at the internal corner of the geometry shown in figure 4.6. This
particular node represents the three-quarter shaded area shown and exchanges energy with a
surrounding fluid at a temperature T through the convection process and with four neighboring

nodes in the solid material through conduction. This transfer occurs along four distinct pathways.

Assuming steady-state conditions and uniform grid spacing, the heat transfer rates by conduction
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from the four neighboring nodes to the central node (m, n) can be expressed using simplified

Fourier's law as follows:

Town—T
=1(Ay.1)-tn _mn 3.24
¢(m—1,n)—>(m,n) ( y ) AX ( )
1 __n:: 1 \[\
/ __‘E(fcond N\ AT
/ ] _I<— Ycond \\ l

\ lq_ Yconv
6‘condT T_ ., h

iy m,n— 1

~ |

AR S

g

- —— | & /¥
m—1,n (fcondl [ m+ 1, n

Figure4.6 : Formulation of the finite-difference equation for an internal corner of a solid

with surface convection.

Tm,n+1 - Tm,n
¢(m,n+1)—>(m,n) =4 (AX.].) Ay
_ Ay Tm+1,n B Tm,n
¢(m+l,n)—>(m,n) =4 (71j AX (325)
AX Tm,n—l - Tm,n
¢(m,n—1)»(m,n) =4 (71j Ay

Notice that heat conduction from the full nodes, (m—1, n) and (m, n—1), occurs across the
full areas of (Ay.1) and (Ax.1), respectively. However, the conduction paths from the partial
nodes, (m+1, n) and (m, n-1), have widths of only (Ay /2) and(Ax/2), respectively. Furthermore,

the node (m, n) also exchanges heat with the surrounding fluid via convection. This occurs over a
surface area that is effectively a quarter of the full nodal area, or a half-length in both the x and y

directions.
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The total convective heat transfer rate ¢

conv

is given by :

B =h (%.1) (T,=T,.)+h (%.1} (T.-T..) (3.26)

The previous formulation of the energy balance for a corner node relies on the key
assumption that the exposed surfaces of the corner have a uniform temperature, which is equal to

the temperature of the node itself, Tmn

This approach is consistent with the fundamental concept of the finite difference method,
where a single temperature value assigned to a node is an approximation. It represents the average
temperature of the entire nodal region, rather than accounting for the actual, continuous

temperature variations within that small area.

Based on the principles of energy conservation and the finite difference method under two-
dimensional, steady-state conditions without internal heat generation, the sum of all heat transfer
rates into a control volume must equal zero. By combining the heat conduction terms from the four
adjacent nodes and the convection term from the surrounding fluid for the specific case of an
internal corner node, and rearranging the equation, we arrive at the following finite-difference

equation :

1 hAX
Tm—l,n +Tm,n+1 +§(Tm+1,n +Tm,n—1)+ Too _(3+7ij,n =0 (327)
where the mesh is (Ax = Ay).

Table 3.1 provides a summary of these equations for several common configurations,

assuming no internal energy generation.
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Table 3.1: nodal energy balance equations for different configurations.

Configuration Finite difference equation for Ax=Ay
m,on+ 1
T -
élr i~~—~~—i Tm,n+l +Tm,n—1 +Tm+1,n +Tm—l,n - 4'Tm,n =0
m-1,n h ] m+ 1, n
m,n=-1
Q_m_’m,ml
° 2
J Toont Tt T+ To o A g o
m=1,n : ::)‘-u: m+1,n m,n+1 + m,n—1 + m+L,n + m-1,n —+ 2{ — mn —
\T\ ol (T
l mn-1
3 em,n+ 1
T hax hAx
o o BT (2Tt + T+ T )+ 2710 -2\ 2 +— T,.=0
m,n=1
- A r—
m=1,n Tosh
b 1 hAX hAX
Ar." IL__._: (Tm,n—l +Tm—1,n)+27Too —2(14'7}1-”1’” :O
mn-1
J .
[ P B q(Ax
o ,,,,J‘_q 2Tm—l,n +Tm,n+1+Tm,n1+2(T)_4Tm,n =0
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EXERCISES

EXERCISE 3.1

A hollow square duct of the configuration shown (left) has its surfaces maintained at 200
and 100 K, respectively. Determine the steady-state heat transfer rate between the hot and cold

surfaces of this duct.The wall material has a thermal conductivity of 1,21W/m. K

We may take advantage of the eightfold symmetry of this figure to lay out the simple

The grid chosen is square with Ax=Ay=0,5m: Three interior node points are thus

identified; their temperatures may be determined by proper application of finite difference method

i 3m | 200 - 100
200
-T—1 m—s 2 100
1m 3m
l 1 2 3 R
T 100
200+100 + 2T,
T, =
4
T 200+100+T, +T,
2 4
100+100 + 2T,
T, = 2
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This set of three equations and three unknowns may be solved quite easily to yield the

following:

T1=145.83K, T>=141.67K and T3=120.83K

The temperatures just obtained may now be used to find heat transfer. Implicit in the
procedure of laying out a grid of the sort, we have specified is the assumption that heat flows in
the x and y directions between nodes. On this basis heat transfer occurs from the hot surface to the
interior only to nodes 1 and 2; heat transfer occurs to the cooler surface from nodes 1, 2, and 3.We
should also recall that the section of duct that has been analysed is one-eight h of the total thus, of
the heat transfer to and from node 1, only one half should be properly considered as part of the

element analysed.

We now solve for the heat transfer rate from the hotter surface, and write

200-T,
¢:2.M+2,(200—T2)
_ ;| (200-145.83) _;45'83) +(200-141, 67)}

=85,4151
A similar accounting for the heat flow from nodes 1, 2, and 3 to the cooler surface is written
as

(T,—100)

o=1 + (T, ~100) + A (T, ~100)

{MNML 67—100)"‘(120’83_100)}

=85,4151
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Observe that these two different means of solving for q yield identical results. This is
obviously a requirement of the analysis and serves as a check on the formulation and numerical

work.
The total heat transfer per meter of duct is calculated as

@ =8(8,415)(1,21)
=826,8|W /m” |

EXERCISE 3.2

The figure below illustrates a rectangular fin section of a furnace wall. The fin is assumed to
be infinitely wide in the z direction, allowing for a two-dimensional heat transfer analysis. The fin
is exposed to a convection environment characterized by a heat transfer coefficient h= 400 W/(m?2.

K) and an ambient temperature T.= 25°C
The thermal conductivity of the fin material is 4 W/ (m K).

Using a numerical (finite-difference) method, calculate the steady-state temperatures for all

the interior and boundary nodes shown in the figure.

20 mm -=25°C
<——|2 4 6 8
Te= > 1: 3: 5: 7 ::10 mm
200 °C ::10 mm
- 80 mm
Ax = 20,
Ay =10
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Solution

Due to the symmetry about the horizontal centerline, there are only 8 different nodal

conditions.

Interior nodes (1, 3 and 5)

At node 1, the heat balance gives

AA, (TSA_XTl) +AA, (TSA_XTl) +2AA, —(TZA_yTl) =0

Where A, =(20x1).10"°[ m’ ] for depth =1m

A, =(10x1).10°[ m? |

Ax=(20).10"[m]
Ay =(10).107°[m]

Substitution of various values gives

102071 10, (=) 5, 90,2 2T g
20 20 10

(Ts _Tl) I (Ta _Tl)
Or 2 2

+4(T,-T,)=0

Or 10T,-T,-T,-8T,=0

So the nodal equation is: 10T, —8T, -T,-200=0

Similarly, the equation for the nodes 3 and 5 can be written as:
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10T, —8T,-T,-T, =0
10T, —8T, -T, -T, =0

Nodes 2, 4, and 6:

These nodes are on the convective boundary. At node 2, the heat balance equation is

aa s )i( )i( %) s h(ax1)(T, -T,) =0

Ay AX Ay

Putting values of Ax,Ay, A, A, and h, we obtain:

[ 4x20(10° )](T? LE ; [4 10(10°? )}Eégiié%g;5+[4xlo(1o3)}E£E§i%%éj
)

)Jr.-

Or 8(T,-T,)+(T,-T,)+(T,-T,)+8(T,—T,)=0

+[4oox(2o(

18T, -8T,-T,-T,-8T, =0

Substituting values of Ts and T, the nodal equation is :
18T, -8T,-T,—-400=0

Similarly, at node 4, we have:

18T, —-8T,-T,-T,-200=0

And the node 6:

18T, 8T, —T,—T,—200=0
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Node 8 (the corner node):

;Li(Ta _T8)+/1i(T7 _T8)+h(AX+Ay).1.(Tw _T8)=0
2 AX 2 Ay 2
Then
T.-T, T,-T, 20+10)10°
4><10><10_3(6—8)3+4x20x10_3(7—8)3+400w(Tw -T,)=0
2x20x%10 2x10x10 2

Or (TG—T8)+4(T7—T8)+6(TOC —T8)=0
Hence 11T,-4T,-T,-150=0

Node 7 at the fin end:

(T-T) 5, A (=T -
e N +h(Ay.1)(T, -T,)=0

Substitution of various values gives:
7T,-4T,-T.-50=0
The complete set of nodal equations is

Node 1: 10T, —8T, -T,—200=0
Node 2: 18T, —8T, -T,-400=0
Node 3: 10T, -8T,-T, -T, =0

Node 4: 18T, —8T,-T,—-T,-200=0
Node 5: 10T, -8T,-T, -T, =0

Node 6: 18T, —8T, - T, —T,—-200=0
Node 7: 7T, -4 T,-T,-50=0
Node 8:11T, -4 T, -T,-150=0

The above set of equations can be solved by Gaussian elimination of relaxation method.
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The relaxation method yields

T,=65.91 C|T,=T,=532 C|.T,=33.69] C].T, =T, =305 C].T,=26.77 C|,
T,=T,=261] C|.T,=2536] C]|,T,=T,=25.22[ C],

EXERCICE 3.3

Analyze the steady-state nodal temperatures for the solid section shown in the figure, which

includes fixed temperature, insulated, and convection boundaries. We GiveA=1.5 (W/m.K) and

h=500 (W/mZK).

calculate the temperatures at Ta, Te and Tc and the total heat transfer rate from the surface

subjected to convection.

Insulated
» $ 9 45.8
129.4 B
1| | T.=30°C
103.5 ¢ Convection
e
1729 |A face ,
) T T328 167  h=500Wm™C
0.1m
* L 4 & L
~~—~200°C—
~—0.1 m—=

For node 'A’, we have

_E+B+E+L

4
_200+200+132.8+137
B 4

TA

=160.7°C

For node 'B', we have
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T+ 2T+ T,
4
~129.4+2(103.5) +45.8
4

TB

=95.6°C

For node 'C', we have

0,5(T, + 2T, +T,;) + h'jx T

Te = h.AxT
2{ o0

500.(0.1)

0,5(67 +2(103) + 45,8) +
= S _37,40C

500.(0,1)
15

30+2

Now the heat convected out by the exposed surface is

# = hAAT

=h.(Ay.Az) Y (T -Te),

— 500(1x0,1)[ (45,8 —30) + (37,4 —30) + (67 —30) +2(200-30)]
= 7258[W |
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CHAPTER 4: VARIABLE REGIME HEAT CONDUCTION
4.1 INTRODUCTION

Until now, the heat conduction models discussed have focused exclusively on temperature
variation as a function of position. However, in many engineering applications, the spatial
temperature variation within a medium is negligible, allowing temperature to be treated as a
function of time only. These simplified formulations, known as the lumped system or lumped
capacitance method, greatly simplify transient heat conduction analysis but their field of
application is very limited. We will illustrate this approach and examine its validity based on Biot

dimensionless number.

4.1 SYSTEMS WITH NEGLIGIBLE INTERNAL RESISTANCE .

Lumped and partially lumped formulation

Let's analyze a small solid composed of a material with !

high thermal conductivity, Initially, this solid has a uniform |l § ) o =
\, X
temperature To. It is then suddenly immersed into a hot fluid bath Wi
T <T, T=1
that is well-stirred and maintained at a uniform temperature T..
This solid has a volume V, a specific heat Cp. and a Figure 4.1: Heating of a metal

a density p a surface area A through which heat can be exchanged (Figure 4.1)

The heat transfer between the object's surface and the surrounding fluid is characterized by
the convection heat transfer coefficient h. Because the solid is small and highly conductive, we
can assume that the temperature within it remains essentially uniform throughout at any given

time, meaning the temperature T is only a function of time T(t). By considering the entire solid
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object as our control volume, the principle of energy conservation can be expressed as :

(Rate of heat flow from the solid through its boundaries) = (Rate of change of the internal energy
of the solid) (4.2)

When heat transfer to or from the control volume occurs only via convection, the energy equation

is expressed by:

AVC, Z—I = —hA[T(t)-T, ] (4.2)

which is rearranged to yield

d—TJrh—A[T(t)—Tcm]:O for t>0 (4.3)
dt  pVC,
Initial condition: T(t=0)=T, (4.4)

Equation (4.3) is a nonhomogeneous ordinary differential equation that can be solved by
finding the sum of its homogeneous and particular solutions. Nevertheless, to simplify the

equation, it is useful to define the temperature 0 (t) as follows:

oO(t)=T(t)-T, (4.5)

With this substitution, the lumped formulation becomes:

d6?('[)+l.6?(t)=0 for t >0
dt b (4.6)
Q(I:O):TO—TOO=6?O
VC
Where b=2"22 4.7
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The solution of equations (4.6) is :

t

0(t)=6,e © (4.8)

This equation provides a very simple way to determine the temperature of the solid at any
given time. It's important to note that the parameter b in this equation has units of seconds (s),

which is known as the thermal time constant of the system.

This term represents the product of the heat capacity multiplied by the convective thermal
resistance. Consequently, if either the heat capacity or the convective resistance (or both) is
smaller, the value of b will be larger, and equation (4.8) shows that the solid temperature 6(t) will

change more rapidly.

Temperature evolution of this system is presented in figure 4.2.

v

Figure 4.2: Evolution of temperature

To determine the applicability criterion for transient heat conduction analysis, we will

introduce the definition of the Biot number which is given by the following form :

Bi - hL, L./AA internal conductive resistance
A 1/hA  external convective resistance

S

(4.9)
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Where A, is the thermal conductivity of the solid. L. is the characteristic length of the solid

it is generally defined as L. =V/A.

The lumped system analysis is a simplification used in transient heat transfer problems. It
relies on the assumption that the temperature within a solid body remains sufficiently uniform

during the heat transfer process.

This assumption is valid when the thermal resistance within the body is negligible compared

to the thermal resistance at its surface. This condition is checked using Biot number (Bi).

Referring to the Biot number definition, a small Biot number (significantly less than one,
like an order of magnitude smaller) indicates this condition. Consequently, the lumped system

analysis is valid only for small values of the Biot numbers, specifically [21]:

. hL N
Bi= /1° <0.1 (Lumped analysis criterion) (4.10)

S

Equation (4.10) presents a valuable criterion for applying lumped analysis. However, for
transient problems, however, the reduction of spatial temperature gradients is a gradual process
that happens as the Biot number decreases. Therefore, we shouldn't view a Biot number of 0.1 as
a strict limit for the existence or absence of these gradients. Instead, it's a practical criterion for
satisfying the condition Bi<1. This is supported by precise analytical solutions for transient heat
transfer in walls, cylinders, and spheres with convective cooling, which show that internal

temperature differences stay below roughly 5% when the Biot number is less than 0.1.

Therefore, in numerous engineering applications, lumped system analysis is generally

acceptable when the Biot number is approximately less than 0.1. To a better understand the
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transient temperature distribution, figure 4.3 illustrates the temperature profiles for a symmetric
plane wall. This wall, initially at a uniform temperature To , undergoes convective cooling on both
surfaces by a fluid at a temperature of T.. . This figure examines three different Biot number:
Bi«1, Bi~1, and Bi>>1. When the Biot number is significantly less than 1 (Bi<«1), as shown in
Figure 4.3.a, the plane wall undergoes a uniform temperature decrease from the initial value To

towards the steady-state fluid temperature T .

This behavior is typical of situations where the resistance to heat transfer at the surface
(convective resistance) is significantly greater than the resistance to heat transfer within the wall
(conductive resistance). This dynamic leads to a uniform temperature throughout the wall at any

given moment, meaning the temperature is a function of time alone, T=T(t).

Figure 4.3.b illustrates the intermediate case where Bi = 1. Here, the conductive resistance
within the wall and the convective resistance at the surface are comparable, leading to the
variations of temperature across the wall's thickness and a temperature difference between the wall

and the fluid.

Finally, figure 4.3.c illustrates the case where Bi is much greater than 1 (Bi>>1). In the
limiting scenario, this approaches an infinitely large convection coefficient (h—o0), which
effectively imposes a fixed surface temperature. In this regime, spatial temperature gradients are

the dominant factor. Specifically, the gradient is exceptionally steep near the surfaces at t=0.
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Figure 4.3: Temperature distribution T(x,t)for a symmetric plane wall cooled by

convection heat transfer for various Biot numbers .

4.2 UNSTEADY-STATE CONDUCTION IN INFINITE MEDIUM.

Tabulated solutions

In this section, we will introduce solutions to unsteady-state

(or transient) problems, where temperature changes with time.

We Consider a semi-infinite solid that occupies the space

x>0, the entire solid is at a uniform temperature, To. At time t=0,

the surface at x=0 is instantaneously and permanently changed to
a new constant temperature T .
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We assume that the temperature is uniform across the y and z directions at all times, meaning
that heat transfer occurs only along the x-axis. This one-dimensional heat flow scenario can be
mathematically represented by considering the solid to extend infinitely in both the positive and

negative y and z directions.

When the surface temperature of a solid, Ts, is higher than its initial uniform temperature,
To, heat will diffuse into the material. This causes the temperature at any point within the solid to
increase over time. Consequently, the temperature T, is a function of both position (x) and time
(t), making it an unsteady-state (or transient) heat transfer problem. The primary objective is to

find this temperature distribution T(Xx, t).

When internal heat generation is negligible and the thermal conductivity is constant, the heat

conduction equation simplifies to the form :

T 16T
PV (411

The boundary conditions are:

—Att=0, T =T, forall x>0
—Atx=0, T =T, forallt>0 (4.12)
—AsX— o, T>T, forallt>0

This final condition is physically intuitive: heat requires an infinite amount of time to

propagate through an infinitely large distance within the solid.

We can solve equation (4.11) with these boundary conditions using the method of

combination of variables, yielding the following result:
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T(X,t)—TS B X
To _Ts —en (2\/&} (#.13)

The error function, erf, is defined by:

X

2at
erf[ X j:i I e?dz (4.14)
0

Jat) Nz

This function is used in various engineering and applied science applications, it can be

evaluated through numerical integration. Its computed values are provided in Table 1.4.
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Table 4.1: The error function.

X erf x X erf x X erf x
0.00 0.00000 0.76 0.71754 1.52 0.96841
0.02 0.02256 0.78 0.73001 1.54 0.97059
0.04 0.04511 0.80 0.74210 1.56 0.97263
0.06 0.06762 0.82 0.75381 1.58 0.97455
0.08 0.09008 0.84 0.76514 1.60 0.97635
0.10 0.11246 0.86 0.77610 1.62 0.97804
0.12 0.13476 0.88 0.78669 1.64 0.97962
0.14 0.15695 0.90 0.79691 1.66 0.98110
0.16 0.17907 0.92 0.80677 1.68 0.98249
0.18 0.20094 0.94 0.81627 1.70 0.98379
0.20 0.22270 0.96 0.82542 1.72 0.98500
0.22 0.24430 0.98 0.83423 1.74 0.98613
0.24 0.26570 1.00 0.84270 1.76 0.98719
0.26 0.28690 1.02 0.85084 1.78 0.98817
0.28 0.30788 1.04 0.85865 1.80 0.98909
0.30 0.32863 1.06 0.86614 1.82 0.98994
0.32 0.34913 1.08 0.87333 1.84 0.99070
0.34 0.36936 1.10 0.88020 1.86 0.99147
036 0.38933 1.12 0.88079 1.88 0.99216
0.38 0.40901 1.14 0.89308 1.90 0.99279
0.40 0.42839 1.16 0.89910 1.92 0.99338
0.42 0.44749 1.18 0.90484 1.94 0.99392
0.44 0.46622 1.20 0.91031 1.96 0.99443
0.46 0.48466 1.22 0.91553 1.98 0.99489
0.48 0.50275 1.24 0.92050 2.00 0.995322
0.50 0.52050 1.26 0.92524 2.10 0.997020
0.52 0.5379 1.28 0.92973 2.20 0.998137
0.54 0.55494 1.30 0.93401 2.30 0.998857
0.56 0.57162 1.32 0.93806 2.40 0.999311
0.58 0.58792 1.34 0.94191 2.50 0.999593
0.60 0.60386 1.36 0.94556 2.60 0.999764
0.62 0.61941 1.38 0.94902 2.70 0.999866
0.64 0.63465 1.40 0.95228 2.80 0.999925
0.66 0.64938 1.42 0.95538 2.90 0.999959
0.68 0.66278 1.44 0.95830 3.00 0.999978
0.70 0.67780 1.46 0.96105 3.20 0.999994
0.72 0.69143 1.48 0.96365 3.40 0.999998
0.74 0.70468 1.50 0.96610 3.60 1.000000
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Mexp(—x2 / 4at) (4.15)

ot

The heat flux is given by: P, =

The total amount of heat transferred per unit area across the surface at x = 0 over time t is given

by the following equation:

Q it -t L
= 2A(T-Ty) | — (4.16)

The concept of a semi-infinite solid is a valuable simplification used to solve complex heat
transfer problems in various practical situations. For instance, the Earth can be effectively modeled

as a semi-infinite solid.

A solid of any actual thickness can be accurately modeled as a semi-infinite solid provided
that the duration of heat transfer is brief enough that the thermal disturbance, or penetration depth,
affects only a small portion of the object near its surface. This simplification is highly valuable
because it allows for the analysis of transient heat transfer problems without needing to consider
the object's full dimensions. Despite its seemingly abstract nature, the semi-infinite solid concept

is a powerful tool with numerous applications in engineering and science.

The acceptability of this approximation is usually determined by the following inequality:

i_zt <01 (4.17)

Where L is the thickness of the solid. The dimensionless group at/L? is called the Fourier

number and is designated as Fo or 7.
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4.3 VARIABLE SEPARATION METHOD IN FINITE MEDUIM

We consider a rod of length 2L that is initially at a uniform temperature To . At time t=0, the
temperatures at both ends of the rod, at x=0 and x=2L, are suddenly changed and held constant at

a new temperature Ty, as shown in figure 4.4 .

T: To, p, Cp, A Ty

X= = x=2L

Figure 4.4: rod study .

The governing differential equation of this problem is :

o°T oT
A—=pC — 4.18
o T (4.18)
The form of this equation shows that it is a linear differential equation of second order in space x

and first order in time t.

We reformulate this equation by putting o = A and =T —T, , we obtain :
p

2
#9_126 @19
X" a ot
Using this new form, we examine the boundary conditions for 6(x,t):
For 0<x<2L and t=0 0(x,0)=T,-T, (4.20.a)
For x=0 and t>0 0(0,t)=0 (4.20.b)
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For x=2L and t>0 f(2L,t)=0

(4.20.c)

To solve this differential equation using the method of variables separation, we assume a solution

of the form :

O(x,t)=X(x).7(t)
Where:

X(x) is a function of x only, and, z(t) is a function of t only.

Calculating the derivatives of &(x,t) gives us:

82«9(x,t):62X(x)

t
Ox? ox "
00
(x1) :gx(x)
ot ot

Thus, the transformed differential equation becomes:

ﬁxuhmzﬁgpdu

OX? a ot

We can rearrange the previous equation as follows :

10X _ 1 or

X ox2  ar ot

(4.21)

(4.22)

(4.23)

(4.24)

To facilitate solution, we can make both equations equal to a constant K which is called the

separation constant :
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X _ 1o

i — =_K?
X ox* ar ot

We can now write two independent linear differential equations:

0> X
OX?

%+K2a.r(t)=0

+K*X(x)=0

The first equation:

0*X
ox?

+K?%X (x)=0
has a solution of the form:

X (x) = C,cos(Kx) +C, sin(Kx)

The second equation:

has a solution of the form
7(t)=C,exp(-K’at)

The expression of &(x,t) becomes:

O(x,t) = X (x).z(t) =[C,cos(Kx) + C, sin(Kx)].C, exp(—K’a 1)

We can simplify this expression by taking:

101

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)



A=C.Cy

(4.32)
A =C, G,
The expression 4.31 becomes:
0(x,t) =[ Acos(Kx) + A, sin(Kx)].exp(-K *at) (4.33)

Using the boundary conditions established earlier, we can now determine the constants A

and Az.
When we apply the second boundary condition (equation 4.20.b), we obtain:
0(0,t) =[ Acos(0) + A, sin(0)].exp(—K?a.t) =0 (4.34)
We can deduce that A1 must be equal to zero.
0(x,t) = A, sin(Kx) exp(-K*a.t) (4.35)
It is clear that A, cannot be equal to zero; otherwise, 6(x,t) = 0throughout the domain.

Application of the third condition to the limits (equation 4.20.c) yields:
0(2L,t) = A,sin(2KL)exp(-A’K.t) =0 (4.36)

Since Ax# 0, therefore:
sin(2KL)=0 (4.37)
This condition is checked if and only if:

zn
K = 4.38
oL (4.38)
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So, the solution may be expressed in the form of a series given by :

olxt)= gp“s'”(zLje '{ (%j“t}

1% nzx _
z_j (T, T)sm dx 'n=135....
L3 2L

An may be determined by introducing the initial conditions (forn=1, 3,5, ...)

1% nzx 4
I! (T, T)sm( oL jdx=E(TO—T1)

The overall solution becomes (forn=1, 3,5, ...):

T-

- 2
T1 ZEZESin(%jexp _(n_ﬂ) al
T,-T, #5n | 2L 2L

200

Time = 0.1 seconds
T,=100C
T,=200C

150

nn unn
NUWR
-

3333

Temperature (C)

100

50 T T T T T T
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of Rod Length (x/2L)

Figure 4.5: Solving the transient heat equation for t=0.1s
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200

150 -

Temperature (C)

100

50 T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Rod Length (x/2L)

Figure 4.6: Solving the transient heat equation for n=199

4.4 TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS, LONG
CYLINDERS, AND SPHERES WITH SPATIAL EFFECTS

Abacus method

This section examines the temporal and spatial temperature variations in one-dimensional
systems like a large plane wall, a long cylinder, and a sphere. We consider these geometries with

a plane wall of thickness 2L and a cylinder and sphere, both with a radius of ro

Initially, each of these bodies is at a uniform temperature T; for (t=0) as illustrated in Figure
4.7, they are suddenly introduced into a vast surrounding medium maintained at a constant

temperature T... Convection heat transfer occurs between these bodies and their surroundings,
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characterized by a uniform and constant heat transfer coefficient h. Notably, each case
demonstrates inherent geometric and thermal symmetry; the plane wall, for example, is symmetric
about its central plane (x=0). The cylinder is symmetrical along its central axis (r=0), and the

sphere is symmetrical around its central point (r=0).

Figure 4.8 illustrates the evolution of the temperature distribution within a plane wall over
time. Initially, at t=0, the entire wall is at a uniform temperature Ti. It is then subjected to a

surrounding medium at a constant temperature T... (the temperature decrease implies that To. < Tj).

However, as heat is transferred from the wall to the surroundings, the temperature at and

near the surfaces begins to decrease.

T, Initially T, T, Initially T,
h U= h h T=3 I L,
h
0 -
L x !

(a) A large plane wall (b) A long cylinder (c) A sphere

Figure 4.7: schematic of the simple geometric configurations that result in one-dimensional heat

transfer
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Figure 4.8: Transient temperature .

Consequently, a temperature gradient is developed across the wall's thickness, causing heat
to conduct from the warmer inner regions toward the cooler outer surfaces. It's notable that, at the
initial moments, the temperature at the centre of the wall remains at T;because it takes time for the

thermal effects from the surface to reach the core.

The initial uniform temperature at the centre of the wall is maintained until a later time, t2.
Throughout this process, the temperature distribution remains symmetric about the central plane.
As heat transfer continues, the temperature profile becomes progressively flatter, eventually
approaching a uniform temperature T... At this point, the wall achieves thermal equilibrium with
its surroundings, and heat transfer ceases due to the absence of a temperature gradient. Analogous

behaviors are also observed for the long cylinder and the sphere.

The analysis of the one-dimensional, unsteady temperature distribution, T(x,t), in a wall
requires the formulation and solution of a partial differential equation (PDE), a task that typically

involves advanced mathematical techniques.
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While a rigorous mathematical solution exists, it typically involves an infinite series that can
be difficult and time-consuming to calculate. For this reason, it is necessary to present the solution

in a more accessible format, such as tables or graphs.

However, the solution to this transient heat transfer problem depends on numerous physical
parameters and variables (x, L, t, A, p, Cp, h, Ti, Ts), making a practical graphical representation

challenging.

To overcome this difficulty, the parameters are combined into dimensionless numbers.

Among this numbers, we can mention: [1]

T(x,t)-T,

Dimensionless temperature: 0(x,t)= T

Dimensionless distance from the center: X =%

. . . . hL, i
Dimensionless heat transfer coefficient: Bi = /; (Biot number)

. . . at .
Dimensionless time 7 = F(Fourler number)

C

Nondimensionalizing the variables is a powerful method for simplifying the analysis of
transient heat transfer. The solution can be expressed as a function of only three dimensionless
parameters: X, Bi, and t. This significant reduction in variables makes it feasible to present the
solution graphically. It should be noted that the dimensionless quantities defined for a plane wall
can be adapted for cylinders and spheres by substituting the spatial variable x with the radial

variable r and the half-thickness L with the outer radius ro.
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It's important to note that the definition of characteristic length for the Biot number differs
between these two types of analysis. It is the half-thickness for a plane wall L, and for a cylinder
or sphere, it is the radius ro , unlike the V/A ratio used as the characteristic length in lumped
capacitance methods. This distinction is crucial for correctly applying the analytical solutions and

charts for these geometries.

Although the exact solution to one-dimensional transient heat conduction problems involves
a mathematically complex infinite series, a much more practical approach is often used. A key
feature of these series is their rapid convergence over time. For this reason, when the Fourier
number z is 0.2 or greater, using only the first term of the series provides a highly accurate

approximation, with an error of less than 2 percent.

For problems where the Fourier number z is 0.2 or greater, the infinite series solution
converges rapidly, making it very convenient and accurate to use a one-term approximation. The
general solution is simply the first term of the series, given by the following equations for each

geometry :

Plane wall 9(x,t)Wall = w =A g iT cos(Ax/L),7>0.2 (4.43)

Cylinder 9(r,t)_, = w =A e (A4r/r,),z>02 (4.44)

Sphere 6?(r,t)Sph = T(Trté =A e AT %,r >0.2 (4.45)
i 1w r r-0
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In this one-term approximation, the constants Al and A1 are dependent only on the Biot

number (Bi). Their corresponding values for plane walls, cylinders, and spheres are typically

provided in tables, such as Table 4.2, for various Biot numbers.

Table 4.2. Coefficient used in the one term approximate solution of transient one-dimensional

heat conduction

Plane Wall Cvlinder Sphere

Bi A,(rad) A, A,(rad) A, A,(rad) A,
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298
0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570 2.1286 1.5526 2.7654 1.8920
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990
00 1.5708 1.2732 2.4048 1.6021 3.1416 2.0000
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The term Jo represents the zeroth-order Bessel function of the first kind, and its values can be

evaluated from the Table 4.3.

Table 4.3: The zeroth and first order Bessel Function of the first kind

n Jo(m) J, ()
0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9900 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8463 0.3688
0.9 0.8075 0.4059
1.0 0.7652 0.4400
1.1 0.7196 0.4709
)2 0.6711 0.4983
1.3 0.6201 0.5220
1.4 0.5669 0.5419
1.5 0.5118 0.5579
1.6 0.4554 0.5699
L 0.3980 0.5778
1.8 0.3400 0.5815
1.9 0.2818 0.5812
2.0 0.2239 0.5767
23 0.1666 0.5683
2.2 0.1104 0.5560
2:3 0.0555 0.5399
2.4 0.0025 0.5202
2.6 —0.0968 0.4708
2.8 —0.1850 0.4097
3.0 —0.2601 0.3391
3.2 —0.3202 0.2613

110



Given that cos (0)=1 and Jo(0)=1, and knowing that Lim (sinx/x)=1, these expressions
x—0

simplify to the following forms at the centre of a plane wall, cylinder, or sphere:

Center of plane wall (x=0) 6., = -'Ir' i =Ae"" (4.46)
T, —

Center of cylinder (r=0) 6,., = T T =Aeh* (4.47)
TO _Too 7/1121

Center of sphere (r=0) 6, ,, = T_T =Ae (4.48)

With a known Biot number, the formulas presented above allow us to calculate the
temperature at any point in the material. Determining the constants A: and A1 typically involves

interpolation.

For users who prefer graphical interpretation, the above relations are often presented in the
form of transient temperature charts, illustrating the one-term approximation solutions. however,
it should be noted that while these charts offer a convenient visual approach, they can be difficult
to read with high precision and are susceptible to interpretation errors. Consequently, the
mathematical relations themselves are generally considered a more reliable method than using the

charts called Heisler charts.

The transient temperature charts for a large plane wall, long cylinder, and sphere illustrated
in (figures from 4.9 to 4.17) are attributed to M. P. Heisler (1947) and are referred to as Heisler
charts, who developed them. These charts were later supplemented by H. Gréber in 1961. For each

geometry, there are typically three charts: the first is used to determine the temperature at the center
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(To) at a given time t, and the second chart helps determine the temperature at any other locations
within the body at that same time, expressed in terms of To. The third chart is used to determine
the total amount of heat transferred up to time t. These graphs are accurate for Fourier numbers (c)

of 0.2 or greater.
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Figure 4.9: Midplane temperature in a plane wall .
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Figure 4.11: Dimensionless heat loss Q/Qo of a plane wall.
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4.5 SOLVING THE 1D TRANSIENT HEAT EQUATION USING THE LAPLACE
TRANSFORM METHOD

The Laplace Transform method is a powerful tool for solving linear differential equations,
especially those modeling transient phenomena such as heat transfer. It converts a differential
equation into an algebraic equation in the Laplace domain (the 's' domain), which is often much

easier to handle.

The 1D transient heat equation

Consider a semi-infinite wall (0<x<») initially at a uniform temperature T;. At time t=0, the

surface at x=0 is suddenly raised and maintained at a temperature To.

The boundary conditions are:

1. Initial condition: T(x,0) =Ti for x>0
2. Boundary condition 1: T (0, t) =To for t>0
3. Boundary condition 2 : T (o, t) =T; for t>0

The general 1D heat equation for a homogeneous, isotropic material without heat generation

£ 2% -0 (4.49)

Where: T(x,t) is the temperature as a function of position x and time t.

The Laplace transform of a function T(x, t) is defined as :

T(x,s) = TT (x,t)e"*dt (4.50)
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We apply the Laplace transform with respect to time (t) to the heat equation. We denote :

T(x,5)=L{T(x,t)}

j*“aTdt——j =0T 40 (4.51)
S

Integration by parts gives :

d —st 1 —st —st
S e T (xt)dt—=| T (x,t T (x,t)dt |=0 4.5
Ie X, t) » (%, ‘: +sje (x,t) (4.52)
d’T 1 s —
_2[0-T(x0)]-T =0 453
dx’? a[ (x )] a (4.53)
Hence
2_ —_— J—
SRS i} (4.54)
dx a a

This is now an ordinary differential equation (ODE) in x in the Laplace domain

The ODE is a second-order linear equation. The general solution to the homogeneous equation

2_ —_—
d I ~>T =0 is of the form:
dx° «

T (x,5) = Aexp(—kx)+Bexp(kx)

(4.55)
Where: k> ==
a
A particular solution to the complete equation is a constant:
T=e (4.56)
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So, the general solution of the ODE is:

T (x,5)=Aexp(—kx)+ Bexp(kx)+% (4.57)

The constants A and B are determined from the boundary conditions:

= T T
For x=0, We have T(O,s):A+B+;':?°
T L_T

For X __, o, we have T(oo,s):B+;=E:>B:O

So, A:TO;T‘ Therefore, T(X,5) = TO;T‘ exp(—kx)+%

Applying the inverse Laplace transform from a given table :

f(t) 1 t th e cos (wt) sin (wt) ; ( X j
erfc
2Jat
F(s) 1 1 n! 1 S o e X (kZ_Sj
S 52 s s—a s+’ P+’ s a
We obtain:

T =(T0—Ti)erfc{ X }Ti

Vot
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EXERCISES

EXERCISE 4.1

A long cylindrical shaft composed of stainless steel is initially at a uniform temperature Ti of 400
°C. The shaft is allowed to cool slowly in an ambient environment. The thermal properties of the

stainless steel at room temperature are:

p=7900] kg /m°|,Cp=477[J /kg.K], A =14,9[W /(mK) Jand & =3,95] m* /s |

Determine the following parameters at a specified time

1. The centerline temperature of the cylinder.

2. The total heat transfer per unit length from the cylinder up to that time.

Solution:

Analysis First the Biot number is calculated to be

hr, 60(0,175)
A 14,9

Bi= =0,705

The constants A1 and A corresponding to this Biot number are, from Table 4.2

J,=1,0935 and A =1,1558

3,95x107°)x(20x60
The Fourier number is r:a—t2:< 8 )X(Z X )
L, (0,175)

=0,1548

which is very close to the value of 0.2. Therefore, the one-term approximate solution (or the

transient temperature charts) can still be used, with the understanding that the error involved will

be a little more than 2 percent. Then the temperature at the center of the shaft becomes
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T,-T,
00,cy| = T?——Tw
T0 -150
400-150

= A 77 =(1,1558)e % (034) _ g 9605

=0,9605= T, =390°C
The maximum heat can be transferred from the cylinder per meter of its length is

m=pV = par’L = 79007 (0,175)" .1=760,1[kg
Qua = MC, (T, —T,) = 760,1x 477 x (400 —150) = 90638[ J |

Once the constant Ji1= 0.4689 is determined from Table 4.3 corresponding tothe constant

A1=1.0935, the actual heat transfer becomes

Qrax T-T,) A4 400-150 ) 1,0935
Q=0,177x90638 =16015[J |

[ij =1_2(T0—Tw]31(21)=1_2(390—150Jo,4689:0,177

EXERCISE 4.2

A steel firewall panel, 5 cm thick, is initially at a uniform temperature of 25 °C. The exterior
surface is suddenly exposed to a temperature of 250 °C. Estimate the temperature at the center and

at the inner surface of the panel after 20 s of exposure to this temperature.
The thermal diffusivity of the panel is 0,97. 107° (m?/s).
Solution

To determine if the panel can be approximated by a semi-infinite solid, we calculate the

at 0,97 x107° x 20

Fourier number: 7 = — = -
L (0,05)

=0,0776
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Since 1 < 0.1, the approximation should be acceptable. Thus, using equation (4.13) with x =

0.025 for the temperature at the center

T=250 o 0025 =erf (0,8974)
25-250 2/0,97x10° x 20

T-250 _ o (0,8974)

T=70.7°C

To infinity

e

Solid initially at Ty
Gy —>» le—— —Qx
L .
2s
T 7 \ .
s

To infinity

Fig. Infinite solid of finite thickness.

For the interior surface, x = 0.05

225

=0,9891
T =27,5°C

12250 o 005 =erf (1,795)
2,/0,97x10° x 20
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Thus, the temperature of the interior surface has not changed greatly from its initial value of

25 °C, and treating the panel as a semi-infinite solid is therefore a reasonable approximation.

EXERCISE 4.3

A solid spherical,20cm in diameter, has an initial temperature of 400 °C. It is suddenly exposed

to air at an ambient temperature T., of 25°C. The convection heat transfer coefficient (h) between
the ball and the air is 80 (W/m?. K)

1. Calculate the time required for the sphere's temperature to decrease to 85°C.
2. Determine the initial rate of cooling at the moment of exposure.

3. Calculate he heat transfer rate from the sphere after 60 seconds.
We give: p=7800[ kg /m*],C, =450[J /kg.K], 2 = 40[W /(m.K)]

Solution

Characteristic length L, =

—0.00333[m]

> <
w| o

gk _ 80(0.00333) _ 0.00666
yl 40

Since Biot number is <0.1, lamped system analysis can be applied

T-T, ~ht
= exp
T T, £C, L,

85-25 -80.t
=exp
400-25 7800 (450) 000333

o 7800(450)0,00333 L[ 375
a 80 60
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Therefore t = 5981.5[5] =1, 66[h]

Now for initial rate of cooling, we have

—me%:h.A.(Ti 1)

o T _DA(T-T)
ot (pV)Cp

ar 80
ot 7800 450x0.00333,

(400-25)=2,567[°C /5]

Instantaneous heat transfer rate is

¢, =hA(T-T,)

o0

But (T-T,)=(T, —Tw)exp[_pg.tl_j

C

ht
=h.A(T -T —
&, (T, w)exp[ pCp_L}

Here t=60s

4, =80.(47(0,01)°). (400 - 25) exp{_ 80 x 60 }

7800 x 450 x0.00333
— 25[W]

The total energy transferred during first minute is
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Q=pV.C (T, —Tw)ll—exp[— h'tL H

pC,.L
3 7800 x 450 x 0.00333
~1856[J]
EXERCISE 4.4

A solid cubical of aluminum with sides measuring 10 mm is initially at a uniform
temperature T; of 50°C. It is placed directly into a flame environment at a temperature T, of 800°C.
The convective heat transfer coefficient h between the flame and the aluminum is 190 W/(m2.K).

The desired final temperature Tt of the cube is 300

1°/ Calculate the total time needed for achieving the final temperature of the cube, the value of

300°C.

Solution

For Aluminum: p =2719[ kg /m°|,C, =871[J /kg.K], A = 215[W / (m.K)]

The characteristic dimension for a cube with side Lis:

\Y L L
LC :—:—2:—
s 6L° 6
-2
Boot’s number is Bi = hi, :190XIX1O =0,001473<0,1
A 6x215

As the Biot number is less than 0.1, the lumped heat capacity analysis can be used, which
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. T-T, hA
Gives =exp| - T
T-T, pCV

Inserting the given data, we have

300-800 ex| — 190x 6x10% x1000 ,
50-800 871x2719x1000

Therefore: 7 =8, 41[s]
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