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Introduction

This collection of exercises and their corresponding solutions is designed as a
supplementary resource for the Thermodynamics module, primarily intended
for second-year undergraduate students pursuing a Licence in Physics.
The aim of this compilation is to reinforce theoretical concepts through practical
problem-solving, bridging the gap between classroom instruction and independent
study.

Thermodynamics, as a fundamental branch of physics, governs the principles
of energy, heat, and work in physical systems. Mastery of this subject is essential
for students, as it forms the basis for advanced studies in statistical mechanics,
fluid dynamics, and engineering applications. However, many learners encounter
challenges in applying abstract thermodynamic laws to concrete problems. This
workbook seeks to address that difficulty by providing a structured set of exercises
ranging from basic to moderately advanced levels, each accompanied by a detailed
solution.

The exercises are carefully selected to align with standard university curricula,
covering key topics such as:

• The First and Second Laws of Thermodynamics,

• Thermodynamic potentials and state functions,

• Heat engines, refrigerators, and efficiency calculations,

• Phase transitions and equations of state,

• Introduction to statistical thermodynamics (where applicable).

Target Audience: While this material is broadly useful for university students
in physical sciences, it is primarily tailored for second-year Licence students
in Physics, who are encountering thermodynamics in depth for the first time.
Educators may also find this compilation helpful as a teaching aid for tutorials
and practice sessions.

Each problem is solved methodically, emphasizing logical reasoning and step-
by-step derivations to cultivate a strong problem-solving intuition. Additionally,
special attention is given to common pitfalls and misconceptions, ensuring a robust
conceptual foundation.

We hope this exercise collection serves as a valuable tool in your academic
journey, helping you develop both confidence and competence in thermodynamics.
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The classification of exercices

The classification that allows for quick navigation to the exercises corresponding
to each thermodynamics topic.

Equations of State and Ideal Gases

Exercise 1: Equation of state of ideal gases, unit of R, molar volume

Exercise 2: Equation of state in specific volume, constant r = R/M

Exercise 3: Relative volume variation (ideal gas law)

Exercise 4: Van der Waals equation, units of a and b

Exercise 5: Units of a and b in Van der Waals, generalization to n moles

Mathematical Relations and Differentials

Exercise 5: Cyclic relation
(
∂P
∂V

)
T

(
∂V
∂T

)
P

(
∂T
∂P

)
V

= −1

Exercise 6: Exact differential, integrating factor

Exercise 7: Exact or inexact differentials, path-dependent calculation

Exercise 8: Reech formulas and relations between partial derivatives

Thermoelastic Coefficients

Exercise 6: Coefficients α, β, χ for an ideal gas

Exercise 7: Expansion and compressibility coefficients from a state equation

Exercise 8: Pressure calculation to maintain constant volume

Exercise 9: Relations between CP , CV , l, h and second derivatives

First Law of Thermodynamics

Exercise 11: Expression of δQ in variables (T, V ), (T, P ), (P, V )

Exercise 12: δQ is not an exact differential

9



The classification of exercices

Exercise 13: Calculation of ∆U in different situations

Exercise 14: Exactness of dU and dS, ideal gas case

Exercise 15: Work exchanged in a Van der Waals transformation

Exercise 16: Work in a cycle of transformations

Exercise 17: Work in reversible and irreversible isothermal transformations

Exercise 18: Reversible adiabatic transformation, work and ∆U

Exercise 19: Polytropic transformation, work and heat

Exercise 20: Adiabatic compression, final temperature and volume

Exercise 21: Polytropic transformation, calculation of k,W,Q

Exercise 22: Reversible cycle with isotherm, isobar, isochore

Exercise 23: Cycle with two isobars and two isochores

Exercise 24: Internal energy and isoenergetic transformation (Van der Waals)

Second Law and Entropy

Exercise 34: Heat exchange between two systems, entropy calculation

Exercise 35: Irreversible cooling, exchanged and created entropy

Exercise 36: Entropy variation with CP (T ) depending on T

Exercise 37: Isentropic compression with variable CP (T )

Heat Transfer and Conduction

Exercise 16: Modes of heat transfer, Fourier’s law, heat equation

Exercise 17: Heat equation in spherical symmetry, steady state

Exercise 18: Thermal balance in a rod with lateral losses

Kinetic Theory of Gases and Statistics

Exercise 19: Maxwell Boltzmann distribution, root-mean-square speed, internal energy

Phase Changes and Calorimetry

Exercise 24: Heating from ice to steam, latent heats and heat capacities

Exercise 25: Water-ice mixture, equilibrium temperature

Exercise 26: Mixtures, heat input by resistor, vaporization

10



The classification of exercices

Thermodynamic Cycles and Engines

Exercice 32 Reversible cycle with isotherm, isobar, isochore

Exercice 33 Cycle with two isobars and two isochores

Exercice 10 (Cycle part)

Exercice 21 (Cycle)

Exact Differentials and State Functions

Exercices 9, 10, 15, 26, 36 (Already classified)

11
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Exercices and solutions

0.0.1 Exercise 1

Given R = 8.31 SI.

1. What is the equation of state for n moles of an ideal gas in the state P, V, T?
Deduce the unit of R.

2. Numerically calculate the molar volume of an ideal gas at a pressure of 1 bar
and a temperature of 0◦C. Given: 1 bar = 105 Pa.

0.0.2 Solution to Exercise 1

The state equation of an ideal gas is:

PV = nRT

The unit of R is:

[R] =
[P ][V ]

[n][T ]
≡ Pa ·m3 ·mol−1 ·K−1

The molar volume of an ideal gas at a pressure of 1 bar and a temperature of 0◦C
is:

V0 =
RT

P
=

8.31× (273.15 + 0)

105
≈ 0.023 m3

where T (K) = T (◦C) + 273.15.

0.0.3 Exercise 2

Let v be the specific volume in m3 · kg−1 of an ideal gas with molar mass M .

1. Show that the equation of state for this gas can be written as Pv = rT .
Specify the expression for r and its unit.

2. Given: M(O) = 16 g ·mol−1, R = 8.31 SI, 1 bar = 105 Pa. Calculate the value
of r for dioxygen.

3. Deduce the specific volume of dioxygen at 300 K and 1 bar.

13
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0.0.4 Solution to Exercise 2

The specific volume v is defined as:

v =
V

m

expressed in m3 · kg−1. The number of moles is n = m
M .

From the ideal gas law:

PV = nRT ⇒ Pv =
RT

M
= rT

where r = R
M and its unit is kg−1 · Pa ·m3 ·K−1.

Calculation of r:

r =
8.31

32× 10−3
≈ 259.69 kg−1 · Pa ·m3 ·K−1

The specific volume of dioxygen is:

v =
rT

P
=

259.69× 300

105
≈ 0.78 m3

0.0.5 Exercise 3

A gas obeys the ideal gas equation. Starting from an equilibrium state of the gas,
the pressure increases by 1% and the temperature by 2%. Determine the relative
change in volume.

0.0.6 Solution to Exercise 3

From the ideal gas law:

PV = nRT ⇒ PdV + V dP = nRdT

Dividing by PV = nRT , we obtain:

dV

V
+
dP

P
=
dT

T

Thus, the relative variation of volume is:

dV

V
=
dT

T
− dP

P
= 2− 1 = 1%

0.0.7 Exercise 4

A gas obeys the Van der Waals equation, which for one mole is:(
P +

a

V 2

)
(V − b) = RT

where a and b are positive constants.

1. In the SI system, what are the units of a and b?

2. Write the Van der Waals equation for n moles.

14
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0.0.8 Solution to Exercise 4

The units of a and b are:

[P ] =
[ a
V 2

]
⇒ [a] = [P ][V 2]

Thus, the unit of a is Pa ·m6 and the unit of b is m3.
Temperature and pressure are intensive parameters and do not depend on the

number of moles, whereas volume is an extensive parameter. If we adopt the
following notation:

1 mole n moles
Temperature T0 T = T0

Pressure P0 P = P0

Volume V0 V = nV0

The Van der Waals equation for n moles is:(
P +

an2

V 2

)
(V − nb) = nRT

0.0.9 Exercise 5

Consider a thermodynamic system with the equation of state F (P, V, T ) = 0.

1. Show that: (
∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

= −1

2. By calculating all partial derivatives, verify the formula for n moles of an ideal
gas and a Van der Waals gas.

0.0.10 Solution to Exercise 5

A thermodynamic system with the state equation:

F (P, V, T ) = 0⇒


V = f(T, P )⇒ dV =

(
∂V
∂T

)
P
dT +

(
∂V
∂P

)
T
dP (1)

P = g(T, V )⇒ dP =
(
∂P
∂T

)
V
dT +

(
∂P
∂V

)
T
dV (2)

T = h(V, P )⇒ dT =
(
∂T
∂V

)
P
dV +

(
∂T
∂P

)
V
dP (3)

We show that: (
∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

= −1

By substituting dT (equation (3)) into the relation for dV (equation (1)), we
obtain:

dV =

(
∂V

∂T

)
P

dT+

(
∂V

∂P

)
T

dP =

(
∂V

∂T

)
P

[(
∂T

∂V

)
P

dV +

(
∂T

∂P

)
V

dP

]
+

(
∂V

∂P

)
T

dP

=

(
∂V

∂T

)
P

(
∂T

∂V

)
P

dV +

[(
∂V

∂T

)
P

(
∂T

∂P

)
V

+

(
∂V

∂P

)
T

]
dP

15
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Since the elementary variation dV of the system is identical to itself, we obtain:(
∂V

∂T

)
P

(
∂T

∂V

)
P

= 1⇒
(
∂V

∂T

)
P

= − 1(
∂T
∂V

)
P[(

∂V

∂T

)
P

(
∂T

∂P

)
V

+

(
∂V

∂P

)
T

]
= 0⇒

(
∂V

∂T

)
P

(
∂T

∂P

)
V

= −
(
∂V

∂P

)
T

= − 1(
∂V
∂P

)
T

⇒
(
∂V

∂T

)
P

(
∂T

∂P

)
V

(
∂P

∂V

)
T

= −1

For n moles of an ideal gas PV = nRT , we calculate the derivatives:

(
∂V
∂T

)
P

=

(
∂[nRTP ]
∂T

)
P

= nR
P(

∂T
∂P

)
V

=

(
∂[PVnR ]
∂P

)
V

= V
nR(

∂P
∂V

)
T

=

(
∂[nRTV ]
∂V

)
T

= −nRT
V 2

Thus:(
∂V

∂T

)
P

(
∂T

∂P

)
V

(
∂P

∂V

)
T

=
nR

P
· V
nR
·
(
−nRT

V 2

)
= −nRT

PV
= −1

This relation is verified for ideal gases.
For n moles of a Van der Waals gas:(

P +
an2

V 2

)
(V − nb) = nRT

Differentiating this expression with respect to T (at constant P ):

∂

∂T

[
P (V − nb) +

an2

V 2
(V − nb) = nRT

]
P

⇒ P

(
∂V

∂T

)
P

− 2an2

V 3
(V − nb)

(
∂V

∂T

)
P

+
an2

V 2

(
∂V

∂T

)
P

= nR

⇒
[
P − 2an2

V 3
(V − nb) +

an2

V 2

](
∂V

∂T

)
P

= nR

Substituting P + an2

V 2 = nRT
V−nb into this expression, we obtain:[

−2an2

V 3
(V − nb) +

nRT

V − nb

](
∂V

∂T

)
P

= nR

⇒
(
∂V

∂T

)
P

=
nR

V − nb
× 1

nRT
(V−nb)2 −

2an2

V 3

Differentiating with respect to P (at constant V ):

∂

∂P

[
P (V − nb) +

an2

V 2
(V − nb) = nRT

]
V

16
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⇒ (V − nb) + 0 + 0 + 0 = nR

(
∂T

∂P

)
V

⇒
(
∂T

∂P

)
V

=
V − nb
nR

Differentiating with respect to V (at constant T ):

∂

∂V

[
P (V − nb) +

an2

V 2
(V − nb) = nRT

]
T

⇒ (V − nb)
(
∂P

∂V

)
T

+ P − 2an2

V 3
(V − nb) +

an2

V 2
= 0

⇒
(
∂P

∂V

)
T

=
2an2

V 3
− an2

V 2(V − nb)
− P

V − nb

⇒
(
∂P

∂V

)
T

=
2an2

V 3
− nRT

(V − nb)2

Thus: (
∂V

∂T

)
P

(
∂T

∂P

)
V

(
∂P

∂V

)
T

= −1

This relation is also verified for a Van der Waals gas.

0.0.11 Exercise 6

1. Calculate the thermodynamic coefficients α, β, χ for an ideal gas.

2. What must be the nature of the equation of state of a gas for α = β?

0.0.12 Solution to Exercise 6

The thermodynamic coefficients α, β, and χ for an ideal gas are:

α =
1

V

(
∂V

∂T

)
P

=
1

V

(
∂
[
nRT
P

]
∂T

)
P

=
nR

PV
=

1

T

β =
1

P

(
∂P

∂T

)
V

=
1

P

(
∂
[
nRT
V

]
∂T

)
V

=
nR

PV
=

1

T

χ = − 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂
[
nRT
P

]
∂P

)
T

=
nRT

PV
= 1

Thus, for ideal gases, we have α = β = 1
T and χ = 1.

The nature of the state equation of a gas such that α = β is:

α = β ⇒ 1

V

(
∂V

∂T

)
P

=
1

P

(
∂P

∂T

)
V

17
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⇒ P

V
=

(
∂P
∂T

)
V(

∂V
∂T

)
P

=

(
∂P

∂T

)
V

(
∂T

∂V

)
P

= − 1(
∂V
∂P

)
T

= −
(
∂P

∂V

)
T

⇒ PdV = −V dP ⇒ dV

V
= −dP

P
⇒ lnV = − lnP+const⇒ ln(PV ) = const⇒ PV = const

The nature of the gas at constant temperature is that of an ideal gas (PV =
nRT = const).

0.0.13 Exercise 7

The equation of state of a fluid can be written as:

ln
V

V0
= a(T − T0)− k(P − P0)

1. Calculate the isobaric expansion coefficient α of this fluid.

2. What does the coefficient k represent?

0.0.14 Solution to Exercise 7

The state equation of a fluid is:

ln
V

V0
= a(T − T0)− k(P − P0)

The isobaric expansion coefficient α of this fluid is:

α =
1

V

(
∂V

∂T

)
P

= a

The coefficient k is:

k = − 1

V

(
∂V

∂P

)
T

= χ

Thus, k represents the isothermal compressibility coefficient χ.

0.0.15 Exercise 8

A piece of metal is taken at 20◦C under a pressure of 1 bar. Determine the
pressure that must be applied to this piece of metal so that its volume remains
constant when its temperature rises to 30◦C. Given: α = 5 × 10−5 K−1 and
χ = 7× 10−12 Pa−1.

0.0.16 Solution to Exercise 8

Given the data α and χ, we have:(
∂V

∂T

)
P

(
∂T

∂P

)
V

(
∂P

∂V

)
T

= −1

⇒ αV

(
∂T

∂P

)
V

(
− 1

χV

)
= −1

18
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⇒
(
∂P

∂T

)
V

=
α

χ

⇒ χdP = αdT ⇒ χ(P − P0) = α(T − T0)

⇒ P =
α

χ
(T − T0) + P0

Numerical application:

P =
5× 10−5

7× 10−12
(30− 20) + 1 =

5

7
× 108 + 1 ≈ 7.15× 107 Pa ≈ 715 bar

0.0.17 Exercise 9

Consider the differential:

dX = CdT +RT
dV

V
where C and R are constants.

1. Is dX an exact differential?

2. Let dS = g(T )dX, with g(T ) = T n, where n is a positive or negative integer.
What is the value of n for dS to be an exact differential?

3. Express in the case:

(a) The partial derivatives
(
∂S
∂T

)
V

and
(
∂S
∂V

)
T

.

(b) The function S(T, V ) up to a constant.

0.0.18 Solution to Exercise 9

Consider the differential:

dX = CdT +RT
dV

V
where C and R are constants.

Since dX varies with T and V , we have:

dX =

(
∂X

∂T

)
V

dT +

(
∂X

∂V

)
T

dV

For dX to be an exact differential, it must satisfy the following condition:

∂

∂V

(
∂X

∂T

)
V

=
∂

∂T

(
∂X

∂V

)
V

Calculating these derivatives:

∂

∂V

(
∂X

∂T

)
V

=
∂C

∂V
= 0

∂

∂T

(
∂X

∂V

)
V

=
∂

∂T

(
RT

V

)
V

=
R

V
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Since 0 6= R
V , dX is not an exact differential.

Given: 
dS = g(T ) · dX
g(T ) = T n

dX = CdT +RT dV
V

⇒ dS = T n · (CdT +
RT

V
dV ) = CT ndT +

RT n+1

V
dV

For dS to be an exact differential:

∂

∂V
(CT n)T =

∂

∂T

(
RT n+1

V

)
V

⇒ 0 =
R

V
(n+ 1)T n

⇒ n+ 1 = 0⇒ n = −1

Thus:

dS =
C

T
dT +

R

V
dV

Integrating:
S(T, V ) = C lnT +R lnV + C0

where C0 is an integration constant.

0.0.19 Exercise 10

Consider the two differentials:

dZ1 = 2xy dx+ x2 dy and dZ2 = 2xy dx+ xy dy

1. Are these differentials exact or inexact?

2. Calculate ∆Z = Z(1, 1) − Z(0, 0) for each differential and for each of the
following paths:

(a) Along the line y = x.

(b) Along the curve y = x2.

0.0.20 Solution to Exercise 10

Given:
dZ1 = 2xy dx+ x2 dy

dZ2 = 2xy dx+ xy dy

For dZ1 to be an exact differential:

∂

∂y
(2xy) =

∂

∂x
(x2)

⇒ 2x = 2x
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Thus, dZ1 is an exact differential, and Z1 is a state function.
For dZ2 to be an exact differential:

∂

∂y
(xy) =

∂

∂x
(2xy)

⇒ x 6= 2x

Thus, dZ2 is not an exact differential, and Z2 is not a state function.
Calculating ∆Z = Z(1, 1)− Z(0, 0) for each differential along the path y = x:

dZ1 = dZ2 = 3x2 dx

∆Z1 = 3

∫ 1

0

x2 dx = 1

∆Z2 = 3

∫ 1

0

x2 dx = 1

Along the path y = x2:
dZ1 = 4x3 dx

∆Z1 = 4

∫ 1

0

x3 dx = 1

dZ2 = 2x3 dx+ 2x4 dx

∆Z2 = 2

∫ 1

0

x3 dx+ 2

∫ 1

0

x4 dx =
1

2
+

2

5
=

9

10

0.0.21 Exercise 11

Consider a reversible elementary transformation for which a single-phase system
is subjected only to pressure forces. The infinitesimal heat exchange δQ can be
expressed as:

• Independent variables (T, V ): δQ = CvdT + ldV

• Independent variables (T, P ): δQ = CpdT + hdP

• Independent variables (P, V ): δQ = λdP + µdV

Express the coefficients l, h, λ, and µ in terms of the heat capacities Cp and Cv
and the appropriate partial derivatives.

0.0.22 Solution to Exercise 11

Consider a reversible elementary transformation for a single-phase system sub-
jected only to pressure forces. The infinitesimal heat exchanged δQ can be ex-
pressed as:

δQ(T, V ) = CvdT + ldV =

(
∂Q

∂T

)
V

dT +

(
∂Q

∂V

)
T

dV
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δQ(T, P ) = CpdT + hdP =

(
∂Q

∂T

)
P

dT +

(
∂Q

∂P

)
T

dP

δQ(P, V ) = λdP + µdV =

(
∂Q

∂P

)
V

dP +

(
∂Q

∂V

)
P

dV

Since T is a state function:

dT =

(
∂T

∂P

)
V

dP +

(
∂T

∂V

)
P

dV

Substituting dT into the expressions for heat, we obtain:

δQ(T, V ) = Cv

(
∂T

∂P

)
V

dP +

[
l + Cv

(
∂T

∂V

)
P

]
dV

δQ(T, P ) =

[
h+ Cp

(
∂T

∂P

)
V

]
dP + Cp

(
∂T

∂V

)
P

dV

δQ(P, V ) = λdP + µdV

Comparing these expressions, we find:

l + Cv

(
∂T

∂V

)
P

= Cp

(
∂T

∂V

)
P

⇒ l = (Cp − Cv)
(
∂T

∂V

)
P

Cv

(
∂T

∂P

)
V

= h+ Cp

(
∂T

∂P

)
V

⇒ h = (Cv − Cp)
(
∂T

∂P

)
V

λ = Cv

(
∂T

∂P

)
V

µ = Cp

(
∂T

∂V

)
P

0.0.23 Exercise 12

1. Consider a reversible transformation of an ideal gas. During an elementary
step, the internal energy of the gas changes by dU ; it receives the elementary
work δW and the elementary heat δQ.

2. Express dU and δW and deduce δQ.

3. Show that δQ is not an exact differential and therefore heat is not a state
function.

0.0.24 Solution to Exercise 12

For an ideal gas, the internal energy depends only on temperature:

dU = CvdT

The elementary work is:
δW = −PdV
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Thus, the heat exchanged is:

δQ = dU − δW = CvdT + PdV

For δQ to be an exact differential, it must satisfy:(
∂

∂V

(
∂Q

∂T

)
V

)
T

=

(
∂

∂T

(
∂Q

∂V

)
T

)
V

⇒
(
∂Cv
∂V

)
T

6=
(
∂P

∂T

)
V

Thus, δQ is not an exact differential, and heat is not a state function.

0.0.25 Exercise 13

An ideal gas is contained in a cylinder closed by a piston. The walls of the cylinder
and the piston are infinitely permeable to heat so that the studied transformations
are isothermal. The initial conditions are P0, V0, T0.

1. The gas is reversibly compressed from P0 to P1. Calculate the work W1

exchanged during the operation. What is the work W ′
1 exchanged by the gas

when it reversibly expands from P1 to P0? Compare W1 and W ′
1 (sign and

value).

2. The gas is irreversibly compressed from P0 to P1 by abruptly applying the
pressure P1 on the external face of the piston. Calculate the work W2 ex-
changed during this operation. What is the work W ′

2 exchanged by the gas
when it expands from P1 to P0, letting the pressure P0 act on the external
face of the piston? Compare W2 and W ′

2. Compare W1 and W2.

Take P0 = 1 atm, P1 = 10 atm.

0.0.26 Solution to Exercise 13

Given: P0 = 1 atm, P1 = 10 atm.
The work W1 exchanged during the reversible compression from P0 to P1 is:

W1 = −
∫ V1

V0

PdV = −nRT0 ln
V0

V1
= nRT0 ln

P1

P0

The work W ′
1 exchanged during the reversible expansion from P1 to P0 is:

W ′
1 = −

∫ V0

V1

PdV = nRT0 ln
V1

V0
= nRT0 ln

P0

P1
= −W1

For irreversible compression:

W2 = P1(V0 − V1) = nRT0P1

(
1

P0
− 1

P1

)
= 9nRT0
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For irreversible expansion:

W ′
2 = P0(V1 − V0) = nRT0P0

(
1

P1
− 1

P0

)
= −0.9nRT0

In absolute value, W2 > W ′
2 and they have opposite signs. Also, W1 =

nRT0 ln 10 ≈ 2.3nRT0 and W2 = 9nRT0, so W1 < W2.

0.0.27 Exercise 14

Calculate the change in internal energy for each of the following systems:

1. A system absorbs Q = 2 kJ while it provides W = 500 J of work to the
surroundings.

2. A gas maintained at constant volume releases Q = 5 kJ.

3. The adiabatic compression of a gas is accomplished by W = 80 J of work.

0.0.28 Solution to Exercise 14

Calculation of the internal energy variation for each system:

dU = δW + δQ⇒ U = 2000− 500 = 1500 J = 1.5 kJ

At constant volume:

δW = −PdV = 0⇒ U = Q = 5 kJ

For adiabatic compression:

δQ = 0⇒ U = W = 80 J

0.0.29 Exercise 15

The state variables pressure P , volume V , and temperature T are related by an
equation of the form f(P, V, T ) = 0, called the equation of state. The equation of
state can also be written, for example, as P = P (V, T ), where the state variable
P appears as a function of the independent variables V and T . Consider the total
differentials:

dU = CV dT + (l − P )dV and dS =
CV
T
dT +

l

T
dV

where CV and l are calorimetric coefficients that depend on the state variables.

1. Explain the relations imposed by the fact that dU and dS are exact differen-
tials.

2. Consider the equation of state PV − nRT = 0, where n and R are constants.
Calculate l; show that CV does not depend on V , and calculate the state
functions U and S, assuming that CV does not depend on T .
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0.0.30 Solution to Exercise 15

Given the total differentials:

dU = CV dT + (l − P )dV

dS =
CV
T
dT +

l

T
dV

where CV and l are calorimetric coefficients depending on state variables.
For dU and dS to be exact differentials:(

∂CV
∂V

)
T

=

(
∂l

∂T

)
V

−
(
∂P

∂T

)
V(

∂
[
CV
T

]
∂V

)
T

=

(
∂
[
l
T

]
∂T

)
V

For an ideal gas PV = nRT :
l = P(

∂CV
∂V

)
T

= 0

Thus, CV does not depend on V .
The internal energy U is:

U = CV T + const

The entropy S is:
S = CV lnT + nR lnV + const

0.0.31 Exercise 16

1. What are the different processes of heat transfer?

as a thermostat, and on the outer face of the wall.

Figure 1: Elementary surface dS.

2. To describe thermal energy transfers, the heat flux density vector ~JQ is some-

times introduced, defined by its flux dφ through an elementary surface ~ds
oriented from (1) to (2): the elementary flux dφ = ~JQ · ~ds represents the ther-

mal power exchanged through ~ds, provided by 1 and received by 2. The flux
dφ being an algebraic quantity, explain the direction of the effective power
transfers between (1) and (2) through ~ds when dφ is positive, and then when
dφ is negative.

25



Exercices and solutions

3. The mathematical expression of ~JQ in the case of heat transfer through a solid
medium is of the form:

~JQ = −λ~∇T
where λ represents the thermal conductivity of the medium (λ > 0). Recall

the expression in Cartesian coordinates of the gradient operator ~∇:

~∇T (x, y, z, t) =
∂T

∂x
~ex +

∂T

∂y
~ey +

∂T

∂z
~ez

(a) Explain the significance of the minus sign in the expression of ~JQ.

(b) Recall the unit of λ.

4. Consider a solid of thermal conductivity λ, to which the frame (O,~i,~j,~k) is
attached. Its specific heat is denoted c, its mass density is denoted ρ. The
quantities λ, ρ, and c are assumed to be uniform and stationary. Inside the
solid, the temperature T is a function of the position variable x and time t.
We denote this function T (x, t).

(a) With these assumptions, give the simplified expression of ~JQ as a function
of λ, a partial derivative of T , and a unit basis vector.

(b) Consider the portion of the solid below: as a thermostat, and on the outer
face of the wall. The portion of the solid considered is delimited by the

Figure 2: Heat transfer.

closed surface consisting of the surfaces S1, S2, and Sl. The points of S1

all have the same abscissa x, those of S2 have abscissa x + dx. Let S be
the area of the surfaces S1 and S2. The surface Sl is a portion of a cylinder
of height dx whose generatrices are parallel to the axis (Ox). Assume also
that there is no heat source in the solid.

i. Let δQ1 be the elementary heat received by the portion of the solid
through the surface S1 between time t and t + dt. Express δQ1 as a
function of λ, S, dt, and a partial derivative of T . Be sure to specify
the values of the variables of the partial derivative.

ii. Similarly, δQ2 represents the elementary heat given by the portion of
the solid through the surface S2 between time t and t + dt. Express
δQ2 as a function of λ, S, dt, and a partial derivative of T . Be sure to
specify the values of the variables of the partial derivative.

iii. Justify that the portion of the solid does not exchange any thermal
energy through Sl.
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iv. Let δ2Q be the total heat received by the portion of the solid between
times t and t + dt. Relate δ2Q to δQ1 and δQ2. Then express δ2Q as
a function of a derivative of T , λ, S, dt, and dx.

v. Also relate δ2Q to the change in temperature dT of the portion studied
between these two times. Involve the quantities ρ, c, S, and dx.

vi. Express the change in temperature dT between times t and t + dt as
a function of a partial derivative of T (x, t) and dt.

vii. Deduce from the three previous questions that the following differential
equation is obtained:

∂T

∂t
= a

∂2T

∂x2

Specify the expression of a as a function of the mass density ρ, the
specific heat c, and the thermal conductivity λ. This relation consti-
tutes the heat equation in one dimension. The coefficient a is called
the thermal diffusivity.

0.0.32 Solution to Exercise 16

1. Different processes of heat transfer:
The three main processes of heat transfer are:

- Conduction: Transfer of heat through a solid medium without the movement
of matter.

- Convection: Transfer of heat through fluids (liquids or gases) involving the
movement of matter.

- Radiation: Transfer of heat via electromagnetic waves, without requiring
any medium.

Figure 3: Elementary surface dS.

2. Direction of power transfers based on dφ:
The elementary flux dφ = ~JQ · ~ds represents the thermal power exchanged

through the surface element ~ds, oriented from (1) to (2):

- If dφ > 0, the thermal power flows from region (1) to region (2).

- If dφ < 0, the thermal power flows from region (2) to region (1).

3. Heat flux density vector and gradient operator:
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(a) Significance of the minus sign in ~JQ = −λ~∇T :
The minus sign indicates that heat flows from regions of higher temper-
ature to regions of lower temperature, as per Fourier’s law. This is con-
sistent with the second law of thermodynamics, which states that energy
spontaneously flows from hot to cold regions.

(b) Unit of λ:
The thermal conductivity λ has units of Wm−1K−1 (watts per meter-
kelvin).

4. Heat transfer in a solid:

(a) Simplified expression of ~JQ:
Since T (x, t) depends only on x and t, the gradient simplifies to:

~∇T =
∂T

∂x
~ex.

Thus, the heat flux density vector becomes:

~JQ = −λ∂T
∂x

~ex.

Figure 4: Elementary surface dS.

(b) Heat transfer analysis for the portion of the solid:

i. Elementary heat received through S1:
The heat flux through S1 is given by:

δQ1 = −
(
~JQ · ~n1

)
Sdt = λS

∂T

∂x

∣∣∣∣
x

dt,

where ~n1 = −~ex is the outward normal at S1.

ii. Elementary heat given through S2:
Similarly, the heat flux through S2 is:

δQ2 = −
(
~JQ · ~n2

)
Sdt = −λS∂T

∂x

∣∣∣∣
x+dx

dt,

where ~n2 = ~ex is the outward normal at S2.

iii. No heat exchange through Sl:
The lateral surface Sl is adiabatic (no heat source), so no heat is ex-
changed through it.
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iv. Total heat received by the portion:
The total heat received is:

δ2Q = δQ1 + δQ2 = λS

(
∂T

∂x

∣∣∣∣
x

− ∂T

∂x

∣∣∣∣
x+dx

)
dt.

Using a Taylor expansion for ∂T
∂x

∣∣
x+dx

:

∂T

∂x

∣∣∣∣
x+dx

≈ ∂T

∂x

∣∣∣∣
x

+ dx
∂2T

∂x2
.

Substituting this into δ2Q:

δ2Q = −λSdx∂
2T

∂x2
dt.

v. Relation to temperature change:
The heat received causes a temperature change dT in the portion of
the solid:

δ2Q = mcdT = (ρSdx)cdT.

vi. Change in temperature dT :
The temperature change can be expressed as:

dT =
∂T

∂t
dt.

vii. Derivation of the heat equation:
Equating the two expressions for δ2Q:

−λSdx∂
2T

∂x2
dt = (ρSdx)c

∂T

∂t
dt.

Simplifying:
∂T

∂t
= a

∂2T

∂x2
,

where the thermal diffusivity a is:

a =
λ

ρc
.

0.0.33 Exercise 17

A futuristic house consists of a hemispherical wall with inner radius R1 and outer
radius R2, placed on a horizontal ground. Let O be the center of the complete
sphere and M a point on the wall (thus such that OM = r is between R1 and R2).
The material constituting it is homogeneous and isotropic, with mass density µ
and specific heat capacity C. A constant temperature T1 prevails inside the house
and on the inner face of the wall, and a temperature T2 < T1 prevails in the outside
air, considered as a thermostat, and on the outer face of the wall.
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Figure 5: The futuristic house.

1. Write the partial differential equation satisfied by the temperature T (r, t) at
any point in the material. Assume invariance under any rotation around an
axis passing through O. Recall the expression of the Laplacian of a scalar
function U(r, t) in spherical coordinates:

∆U =
1

r2

∂

∂r

(
r2∂U

∂r

)
2. In the stationary regime, determine the temperature inside the wall.

3. Express the heat flux escaping from the house, neglecting the effects of the
ground.

4. What is the thermal resistance of the house, still neglecting the effects of the
ground?

0.0.34 Solution to Exercise 17

Figure 6: The futuristic house.

1. Partial Differential Equation for T (r, t)

The temperature T (r, t) in the material satisfies the heat equation:

∂T

∂t
= α∆T,

where α = k
µC is the thermal diffusivity of the material, k is the thermal conduc-

tivity, µ is the mass density, and C is the specific heat capacity.
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Assuming spherical symmetry (invariance under any rotation around an axis
passing through O), the Laplacian in spherical coordinates simplifies to:

∆T =
1

r2

∂

∂r

(
r2∂T

∂r

)
.

Thus, the partial differential equation becomes:

∂T

∂t
= α

1

r2

∂

∂r

(
r2∂T

∂r

)
.

2. Temperature Distribution in the Stationary Regime

In the stationary regime, the temperature does not depend on time (∂T∂t = 0). The
heat equation reduces to:

1

r2

∂

∂r

(
r2∂T

∂r

)
= 0.

Multiplying through by r2, we obtain:

∂

∂r

(
r2∂T

∂r

)
= 0.

This implies that:

r2∂T

∂r
= C1,

where C1 is a constant of integration. Dividing by r2, we get:

∂T

∂r
=
C1

r2
.

Integrating again with respect to r, we find:

T (r) = −C1

r
+ C2,

where C2 is another constant of integration.
To determine C1 and C2, we use the boundary conditions:

T (R1) = T1 and T (R2) = T2.

Substituting r = R1 into the general solution:

T1 = −C1

R1
+ C2.

Substituting r = R2:

T2 = −C1

R2
+ C2.

We solve this system of equations for C1 and C2. Subtracting the second equa-
tion from the first:

T1 − T2 = −C1

R1
+
C1

R2
.
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Factoring out C1:

T1 − T2 = C1

(
1

R2
− 1

R1

)
.

Solving for C1:

C1 =
T1 − T2
1
R2
− 1

R1

=
(T1 − T2)R1R2

R1 −R2
.

Substituting C1 back into one of the boundary conditions (e.g., T1 = −C1

R1
+C2):

C2 = T1 +
C1

R1
= T1 +

(T1−T2)R1R2

R1−R2

R1
.

Simplifying:

C2 = T1 +
(T1 − T2)R2

R1 −R2
.

Thus, the temperature distribution in the stationary regime is:

T (r) = −(T1 − T2)R1R2

(R1 −R2)r
+ T1 +

(T1 − T2)R2

R1 −R2
.

3. Heat Flux Escaping from the House

The heat flux density is given by Fourier’s law:

q = −k∇T.

In spherical symmetry, the radial component of the heat flux density is:

qr = −k∂T
∂r
.

From the expression for T (r), we have:

∂T

∂r
=

(T1 − T2)R1R2

(R1 −R2)r2
.

Thus:

qr = −k (T1 − T2)R1R2

(R1 −R2)r2
.

The total heat flux escaping from the house is obtained by integrating over the
outer surface of the hemisphere (r = R2):

Φ =

∫
hemisphere

qr dA.

The surface area element in spherical coordinates is dA = 2πr2 sin θ dθ, but for
a hemisphere, the total surface area is simply:

A = 2πR2
2.

32



Exercices and solutions

Therefore:

Φ = qr(R2) · A =

(
−k (T1 − T2)R1R2

(R1 −R2)R2
2

)
· 2πR2

2.

Simplifying:

Φ = −2πk
(T1 − T2)R1R2

R1 −R2
.

Since T1 > T2, the negative sign indicates heat flow outward, so:

Φ = 2πk
(T1 − T2)R1R2

R1 −R2
.

4. Thermal Resistance of the House

Thermal resistance Rth is defined as:

Rth =
∆T

Φ
.

Here, ∆T = T1 − T2 and Φ = 2πk (T1−T2)R1R2

R1−R2
. Substituting:

Rth =
T1 − T2

2πk (T1−T2)R1R2

R1−R2

.

Simplifying:

Rth =
R1 −R2

2πkR1R2
.

Thus, the thermal resistance of the house is:

Rth =
R1 −R2

2πkR1R2
.

0.0.35 Exercise 18

A solid copper rod, cylindrical, of axis (OX), length l, radius a, and thermal
conductivity K, is in contact at one of its ends (x = 0) with a heat exchanger at
temperature T0 and at its lateral surface and its other end (x = l) it is in contact
with a fluid at constant temperature Te (T0 > Te).

Figure 7: A copper rod.
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1. We are in a steady state and assume that inside the rod the radial temperature
gradient is sufficiently weak to consider that in the cross-section at abscissa x,
the temperature T (x) is uniform. The rod presents, at the level of its surface
in contact with the fluid, thermal losses, per unit time and surface, equal
to h(T (x) − Te), if T (x) denotes the temperature of the point of the surface
considered and h a constant coefficient.

2. Determine the temperature distribution T (x) within the rod.

3. Calculate T (l). Given: K = 389 W · m−1 · K−1, h = 155 W · m−2 · K−1,
a = 1 mm, T0 = 340 K, Te = 300 K, and l = 10 cm.

0.0.36 Solution to Exercice 18

A solid copper rod, cylindrical in shape, with axis (OX), length l, radius a, and
thermal conductivity K, is in contact at one of its ends (x = 0) with a heat
exchanger at temperature T0. Its lateral surface and the other end (x = l) are in
contact with a fluid at constant temperature Te (T0 > Te).

We assume steady-state conditions and that the radial temperature gradient
inside the rod is sufficiently small to consider the temperature T (x) uniform in
the cross-section at abscissa x. The rod exhibits thermal losses on its surface in
contact with the fluid, per unit time and surface area, equal to h(T (x)−Te), where
T (x) is the temperature at the considered point of the surface and h is a constant
coefficient.

Figure 8: The solid copper rod.

1. Heat Balance Equation

The heat flux along the rod satisfies the following balance equation:

φx = φx+dx + h(T (x)− Te) · dSlateral,

where φx is the heat flux at position x, and dSlateral = 2πa dx is the lateral sur-
face area of the rod over an infinitesimal length dx. Substituting the heat flux
expressions:

jxπa
2 = jx+dxπa

2 + h[T (x)− Te] · 2πa dx,

with jx = −K ∂T (x)
∂x and jx+dx = −K ∂T (x+dx)

∂x .
After simplification:

πa2(jx − jx+dx) = h[T (x)− Te] · 2πa dx.
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Figure 9: The sections.

Substituting jx and jx+dx:

πa2

(
−K∂T (x)

∂x
+K

∂T (x+ dx)

∂x

)
= h[T (x)− Te] · 2πa dx.

Further simplification yields:

Ka
∂

∂x

(
∂T (x)

∂x

)
= 2h[T (x)− Te].

Thus, the second-order differential equation governing the temperature distri-
bution is:

∂2T (x)

∂x2
=

2h

Ka
(T (x)− Te) . (1)

2. Solving the Differential Equation

The solution process involves three steps:
Step 1: Homogeneous Solution For the homogeneous equation:

∂2T (x)

∂x2
=

2h

Ka
T (x),

the characteristic equation is:

r2 − 2h

Ka
= 0 ⇒ r = ±

√
2h

Ka
.

The homogeneous solution is:

T (x) = Ae
√

2h
Kax +Be−

√
2h
Kax.

Step 2: Particular Solution Assume a constant solution T (x) = C. Substituting
into Equation (1):

∂2C

∂x2
=

2h

Ka
(C − Te) = 0 ⇒ C = Te.

Thus, T (x) = Te is a particular solution.
Step 3: General Solution The general solution is the sum of the homogeneous

and particular solutions:

T (x) = Ae
√

2h
Kax +Be−

√
2h
Kax + Te.
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3. Applying Boundary Conditions

Boundary Condition 1: At x = 0, T (0) = T0:

T (0) = Ae0 +Be0 + Te = T0 ⇒ A+B = T0 − Te. (2)

Boundary Condition 2: At x = l, T (l) = Te:

T (l) = Ae
√

2h
Ka l +Be−

√
2h
Ka l + Te = Te.

Simplifying:

Ae
√

2h
Ka l +Be−

√
2h
Ka l = 0. (3)

From Equations (2) and (3), solve for A and B:

A =
(Te − T0)e−

√
2h
Ka l

e
√

2h
Ka l − e−

√
2h
Ka l

, B =
(T0 − Te)e

√
2h
Ka l

e
√

2h
Ka l − e−

√
2h
Ka l

.

Substitute A and B into the general solution:

T (x) =
Te − T0

e
√

2h
Ka l − e−

√
2h
Ka l

(
e
√

2h
Ka (x−l) − e

√
2h
Ka (l−x)

)
+ Te.

4. Calculating T (l)

Using the given data:

K = 389 W ·m−1 ·K−1, h = 155 W ·m−2 ·K−1, a = 1 mm = 0.001 m,

T0 = 340 K, Te = 300 K, l = 10 cm = 0.1 m.

Compute α =
√

2h
Ka :

α2 =
2 · 155

389 · 0.001
=

310

0.389
≈ 796.91 ⇒ α ≈

√
796.91 ≈ 28.23 m−1.

Substitute into the expression for T (l) and compute numerically:

T (l) =
−40

e28.23·300 − e−28.23·300

(
e28.23·(0.1−300) − e28.23·(300−0.1)

)
+ Te.

After numerical evaluation:

T (l) ≈ 303.2 K .

0.0.37 Exercise 19

Given: ∫ ∞
0

x2e−ax
2

dx =
1

4a

√
π

a
,

∫ ∞
0

x4e−ax
2

dx =
3

8a2

√
π

a

1. In the furnace, cesium 133 behaves as a monoatomic ideal gas. A volume
V contains N atoms of mass m (i.e., n0 = N/V atoms per unit volume) at
temperature T .

36



Exercices and solutions

2. Indicate the expression of the kinetic energy E of an atom of a monoatomic
ideal gas as a function of its velocity.

3. It is admitted that the previous gas obeys Boltzmann statistics: the number
of atoms contained in an infinitesimal volume dV , whose velocity vectors have
a norm between v and v + dv, is:

dN = A exp

(
− E

kT

)
v2dvdV

4. Give the expression of N , the total number of atoms contained in the volume
V , as a function of A.

5. Determine the elementary probability dP = f(v)dv.

6. Calculate the root mean square velocity vq (square root of the mean of the
squares of the velocities of the various atoms) using the previous results.

7. Define the internal energy U of the studied ideal gas contained in the volume
V ; give its expression as a function of the absolute temperature T .

0.0.38 Solution to Exercice 19∫ ∞
0

x2e−ax
2

dx =
1

4a

√
π

a
,

∫ ∞
0

x4e−ax
2

dx =
3

8a2

√
π

a

In the oven, cesium-133 behaves like a monoatomic ideal gas. A volume V
contains N atoms of mass m (i.e., n0 = N

V atoms per unit volume) at temperature
T . 1- The expression for the kinetic energy E of an atom in a monoatomic ideal
gas as a function of its velocity is the translational kinetic energy:

E =
1

2
mv2,

where m is the mass of the atom and v is its velocity.
2- We assume that the gas follows Boltzmann statistics: the number of atoms

contained in an infinitesimal volume dV , whose velocity magnitudes lie between v
and v + dv, is:

dN = A exp

(
− E

kT

)
v2 dv dV.

3- The total number of atoms N contained in the volume V as a function of A
is:

N =

∫ ∞
0

A exp

(
− E

kT

)
v2 dv V,

since the magnitude of the velocity v can vary between 0 and ∞.
Thus:

N = AV

∫ ∞
0

exp

(
−mv

2

2kT

)
v2 dv.
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This integral is of the form:∫ ∞
0

x2e−ax
2

dx =
1

4a

√
π

a
.

Therefore: ∫ ∞
0

exp

(
−mv

2

2kT

)
v2 dv =

2kT

4m

√
2kTπ

m
=
kT

2m

√
2kTπ

m
.

Hence:

N = AV
kT

2m

√
2πkT

m
.

4- The elementary probability is:

dP = f(v) dv =
dN

N
=
AV exp

(
−mv2

2kT

)
v2 dv

AV kT
2m

√
2kTπ
m

.

Simplifying:

dP = f(v) dv =
2m

kT

√
m

2πkT
exp

(
−mv

2

2kT

)
v2 dv.

Calculation of the Root Mean Square Velocity vq

The root mean square velocity vq (square root of the mean of the squares of the
velocities of the various atoms) is calculated using the previous result:

vq =
√
〈v2〉 =

√∫ ∞
0

v2f(v) dv =

√∫ ∞
0

2m

kT

√
m

2πkT
exp

(
−mv

2

2kT

)
v4 dv.

This gives an integral of the form:∫ ∞
0

x4e−ax
2

dx =
3

8a2

√
π

a
,

where x = v and a = m
2kT . Substituting:∫ ∞

0

exp

(
−mv

2

2kT

)
v4 dv =

3

8
(
m

2kT

)2

√
π
m

2kT

=
3k2T 2

2m2

√
2πkT

m
.

Thus:

vq =

√
2m

kT

√
m

2πkT
· 3k2T 2

2m2

√
2πkT

m
.

Simplifying:

vq =

√
3kT

m
.

vq =

√
3kT

m
.
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Internal Energy U of the Ideal Gas

The internal energy U of the ideal gas under study is the sum of the kinetic energies
of the atoms contained in the volume V . On average, U is therefore:

U = 〈1
2
mv2〉 =

1

2
m〈v2〉 =

1

2
mv2

q =
1

2
m · 3kT

m
.

Simplifying:

U =
3

2
kT.

This is the expression for the internal energy as a function of the absolute tem-
perature T .

0.0.39 Exercise 20

One mole of Van der Waals gas, with the equation of state (P + a
V 2 )(V − b) = RT ,

undergoes a reversible isothermal transformation where its volume changes from
V1 to V2.

• Calculate the work exchanged with the surroundings.

• Compare the result obtained with that of an ideal gas.

0.0.40 Solution to Exercise 20

The work exchanged with the surroundings is given by:

δW = −P dV

where the pressure P is:

P =
RT

V − b
− a

V 2

For an isothermal transformation (T2 = T1 = T = constant):

δW = −
(

RT

V − b
− a

V 2

)
dV

W12 = −
∫ V2

V1

RT

V − b
dV +

∫ V2

V1

a

V 2
dV

W12 = −RT
∫ V2

V1

dV

V − b
+ a

∫ V2

V1

dV

V 2

W12 = −RT ln(V − b)
∣∣∣∣V2
V1

− a

V

∣∣∣∣V2
V1

W12 = −RT [ln(V2 − b)− ln(V1 − b)]− a
(

1

V2
− 1

V1

)
W12 = RT ln

(
V1 − b
V2 − b

)
+ a

(
1

V1
− 1

V2

)
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Comparison with an ideal gas (PV = RT ):

P =
RT

V

W ′
12 = −

∫ V2

V1

RT

V
dV = −RT

∫ V2

V1

dV

V
= −RT (lnV2 − lnV1) = RT ln

(
V1

V2

)

W12 = RT ln

(
V1 − b
V2 − b

)
+ a

(
1

V1
− 1

V2

)
= RT ln

(
V1

V2
·

1− b
V1

1− b
V2

)
+ a

(
1

V1
− 1

V2

)

W12 = RT ln

(
V1

V2

)
+RT ln

(
1− b

V1

1− b
V2

)
+a

(
1

V1
− 1

V2

)
= W ′

12+RT ln

(
1− b

V1

1− b
V2

)
+a

(
1

V1
− 1

V2

)

0.0.41 Exercise 21

One mole of an ideal gas, initially in state A(P1, V1, T1), undergoes an isobaric ex-
pansion to stateB(P1, V2, T2), followed by an isochoric process to state C(P2, V2, T1),
and finally an isothermal compression back to state A.

• Calculate the work done during each transformation.

0.0.42 Solution to Exercise 21

Transformation A→ B:

This transformation is isobaric, meaning the pressure is constant (P = P1):

δW = −P dV ⇒ WAB = −
∫ V2

V1

P dV = −P1

∫ V2

V1

dV = −P1(V2 − V1)

WAB = P1(V1 − V2)

Transformation B → C:

This transformation is isochoric, meaning the volume is constant (V = V2):

δW = −P dV ⇒ WBC = 0

Transformation C → A:

This transformation is isothermal, meaning the temperature is constant (T = T1):
The equation of state for one mole of an ideal gas is PV = RT1, so P = RT1

V :

δW = −P dV ⇒ WCA = −
∫ V2

V1

RT1

V
dV = −RT1

∫ V2

V1

dV

V
= −RT1 lnV

∣∣∣∣V2
V1

= RT1 ln

(
V1

V2

)
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0.0.43 Exercise 22

One mole of an ideal gas at an initial temperature of 298 K expands from an initial
pressure of 5 atm to a final pressure of 1 atm. In each of the following cases:

• Reversible isothermal expansion.

• Irreversible isothermal expansion.

Calculate the final temperature T2 of the gas and the work W done by the gas.

0.0.44 Solution to Exercise 22

Isothermal and Reversible Expansion:

For an isothermal expansion (T = T1 = T2 = 298 K): For one mole of an ideal gas,
the equation of state is PV = RT , so P = RT

V . During a reversible transformation,
the pressure changes and is variable:

δW = −P dV = −RT
V

dV ⇒ W = −RT
∫ V2

V1

dV

V
= −RT lnV

∣∣∣∣V2
V1

= RT ln

(
V1

V2

)

W = RT ln

(
V1

V2

)
Given:

P1V1 = RT1, P2V2 = RT2, T = T1 = T2

P1V1 = P2V2 ⇒
V1

V2
=
P2

P1

W = RT ln

(
P2

P1

)
Numerical application: W = −3987 J.

Isothermal and Irreversible Expansion:

In an irreversible transformation, the pressure is constant and equal to the final
pressure Pext = P2 = 1 atm:

δW = −P dV ⇒ W ′ = −P2

∫ V2

V1

dV = −P2(V2 − V1)

Given:

P1V1 = P2V2 = RT ⇒ V1 =
RT

P1
, V2 =

RT

P2

W ′ = RT

(
P2

P1
− 1

)
Numerical application: W ′ = −1982 J.
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0.0.45 Exercise 23

A gas obeys the Van der Waals equation for one mole:

(P +
a

V 2
)(V − b) = RT

where a and b are positive constants.

• In the International System of Units, what are the units of a and b?

• Write the Van der Waals equation for n moles.

0.0.46 Solution to Exercice 23

The units of constants a and b in the SI system are determined as follows:

[V − b] = [V ]− [b] = [V ] = [b] =⇒ [b] = L3,

so the unit of b is m3.[
P +

a

V 2

]
= [P ] +

[ a
V 2

]
= [P ] =

[ a
V 2

]
=⇒ [a] = [P ][V 2],

where

[P ] =
[F ]

[S]
=

([m] · [X] · [t−2])

([X] · [X])
=

([m] · [t−2])

[X]
= ML−1T−2,

and

[V 2] = [X3]2 = L6.

Thus,

[a] = ML−1T−2L6 = ML5T−2,

so the unit of a is kg ·m5 · s−2.

Van der Waals Equation for n Moles

For one mole, the equation of state as a function of P0, V0, and T0 is:(
P0 +

a

V 2
0

)
(V0 − b) = RT0.

For n moles, the equation of state as a function of P , V , and T is derived. Here:
V = nV0 (extensive),

P = P0 (intensive),

T = T0 (intensive).

Substituting these relationships into the equation:(
P0 +

a

V 2
0

)
(V0 − b) = RT0 ⇐⇒

(
P +

a

(V/n)2

)(
V

n
− b
)

= RT.
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Simplifying further: (
P +

an2

V 2

)
(V − nb) = nRT.

Thus, the equation of state for n moles is:(
P +

an2

V 2

)
(V − nb) = nRT.

0.0.47 Exercise 24

A piece of ice with mass M = 500 g, initially at −10◦C, receives heat at a rate of
q = 175 J/s, according to the following diagram:

Figure 10: The diagram T(t).

• Describe the different phases.

• Evaluate the latent heats of phase change.

• Evaluate the specific heats of each phase and the molar heat of water vapor.

0.0.48 Solution to Exercise 24

Different Phases:

• Phase 1 (t ∈ [0, 1 min]): The ice warms up from −10◦C to 0◦C.

• Phase 2 (t ∈ [1, 16 min]): The ice melts at 0◦C and turns into liquid.

• Phase 3 (t ∈ [16, 37 min]): The liquid from phase 2 heats up from 0◦C to
100◦C.

• Phase 4 (t ∈ [37, 144.5 min]): The liquid evaporates at a constant temperature
of 100◦C.

• Phase 5 (t ∈ [144.5, 149 min]): The vapor from the previous phase heats up
from 100◦C to 150◦C.
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Figure 11: The diagram T(t).

Latent Heats of Phase Change:

The latent heat is defined as:

Q = m · L = q ·∆t⇒ L =
q ·∆t
m

• Phase 2 (t ∈ [1, 16 min]): LF = 336 J/g.

• Phase 4 (t ∈ [37, 144.5 min]): LF = 2257.5 J/g.

Specific Heats of Each Phase:

The specific heat is defined as:

Q = m · cP ·∆T = q ·∆t⇒ cP =
q ·∆t
m ·∆T

where cP is the specific heat at constant pressure.

• Phase 1 (t ∈ [0, 1 min]): cP = 21 J/g ·K.

• Phase 3 (t ∈ [16, 37 min]): cP = 4.41 J/g ·K.

• Phase 5 (t ∈ [144.5, 149 min]): cP = 1.89 J/g ·K.

The molar heat of water vapor is:

cP =
q ·∆t
m ·∆T

=
q ·∆t

n ·M ·∆T
⇒M · cP =

q ·∆t
n ·∆T

where M is the molar mass of water.

CP = (2MH +MO)cP = (2 + 16) · 1.89 = 34.02 J/mol ·K.

0.0.49 Exercise 25

In a calorimeter with negligible heat capacity containing m1 = 200 g of water at
T1 = 50◦C, a mass m2 = 200 g at T2 = −10◦C is dropped. The mixture reaches
an equilibrium state at temperature Tf .

• Determine the final temperature Tf .
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0.0.50 Solution to Exercice 25

Step 1: Heat Exchange Analysis The system involves three key processes:

• 1. The cold mass m2 warms up from T2 = −10◦C to Tf .

• 2. Some or all of the cold mass may melt if it is ice (latent heat of fusion).

• 3. The warm water m1 cools down from T1 = 50◦C to Tf .

Since Tf > T0, we assume that all the ice melts completely during the process.
Step 2: Heat Balance Equation The principle of conservation of energy states

that the total heat lost by the warm water equals the total heat gained by the cold
mass (including both warming and melting). Mathematically:

Qlost = Qgained,

where:

• - Qlost is the heat lost by the warm water,

• - Qgained includes the heat required to warm the cold mass and melt it.

The heat balance equation becomes:

m1cw(T1 − Tf ) = m2ci(T0 − T2) +m2Lf +m2cw(Tf − T0),

where:

• - cw = 4.18 J/g
◦
C is the specific heat of water,

• - ci = 2.09 J/g
◦
C is the specific heat of ice,

• - Lf = 334 J/g is the latent heat of fusion of ice.

Step 3: Substitute Known Values Substitute the given values:

• - m1 = 200 g,

• - m2 = 200 g,

• - T1 = 50◦C,

• - T2 = −10◦C,

• - T0 = 0◦C,

• - cw = 4.18 J/g
◦
C,

• - ci = 2.09 J/g
◦
C,

• - Lf = 334 J/g.

The equation becomes:

200 · 4.18 · (50− Tf ) = 200 · 2.09 · (0− (−10)) + 200 · 334 + 200 · 4.18 · (Tf − 0).

Simplify each term:
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• - Left-hand side: 200 · 4.18 · (50− Tf ) = 836 · (50− Tf ) = 41800− 836Tf ,

• - First term on the right-hand side: 200 · 2.09 · 10 = 4180,

• - Second term on the right-hand side: 200 · 334 = 66800,

• - Third term on the right-hand side: 200 · 4.18 · Tf = 836Tf .

Thus, the equation becomes:

41800− 836Tf = 4180 + 66800 + 836Tf .

Step 4: Solve for Tf Combine like terms:

41800− 4180− 66800 = 836Tf + 836Tf .

Simplify:
−29180 = 1672Tf .

Solve for Tf :

Tf =
−29180

1672
≈ 17.45◦C.

Final Answer:
Tf ≈ 17.45◦C

0.0.51 Exercise 26

Let f be a state function defined by the three state variables P , V , and T of a
system such that f(P, V, T ) = 0.

• Write the differentials dV , dP , and dT and deduce the following Reech for-
mulas: (

∂V

∂T

)
P

(
∂T

∂V

)
P

= 1(
∂V

∂P

)
T

(
∂P

∂V

)
T

= 1(
∂T

∂P

)
V

(
∂P

∂T

)
V

= 1(
∂T

∂P

)
V

(
∂P

∂V

)
T

(
∂V

∂T

)
P

= −1

0.0.52 Solution to Exercice 26

The differentials are given as:

V (p, T )
differential−−−−−−→ dV =

(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT . . . (1)

p(V, T )
differential−−−−−−→ dp =

(
∂p

∂V

)
T

dV +

(
∂p

∂T

)
V

dT . . . (2)

T (p, V )
differential−−−−−−→ dT =

(
∂T

∂p

)
V

dp+

(
∂T

∂V

)
p

dV . . . (3)
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Case 1: Substituting (3) into (1) and (2)

(3) into (1):

Substituting dT from (3) into (1):

dV =

(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT =

(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

[(
∂T

∂p

)
V

dp+

(
∂T

∂V

)
p

dV

]
Expanding:

dV =

(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

(
∂T

∂p

)
V

dp+

(
∂V

∂T

)
p

(
∂T

∂V

)
p

dV

dV =

[(
∂V

∂p

)
T

+

(
∂V

∂T

)
p

(
∂T

∂p

)
V

]
dp+

(
∂V

∂T

)
p

(
∂T

∂V

)
p

dV

By identification, we obtain:
(
∂V
∂p

)
T

+
(
∂V
∂T

)
p

(
∂T
∂p

)
V

= 0(
∂V
∂T

)
p

(
∂T
∂V

)
p

= 1 =⇒
(
∂V
∂T

)
p

= 1

( ∂T∂V )
p

. . . (4)

(3) into (2):

Substituting dT from (3) into (2):

dp =

(
∂p

∂V

)
T

dV+

(
∂p

∂T

)
V

dT =

(
∂p

∂V

)
T

dV+

(
∂p

∂T

)
V

[(
∂T

∂p

)
V

dp+

(
∂T

∂V

)
p

dV

]
Expanding:

dp =

(
∂p

∂V

)
T

dV +

(
∂p

∂T

)
V

(
∂T

∂p

)
V

dp+

(
∂p

∂T

)
V

(
∂T

∂V

)
p

dV

dp =

(
∂p

∂T

)
V

(
∂T

∂p

)
V

dp+

[(
∂p

∂V

)
T

+

(
∂p

∂T

)
V

(
∂T

∂V

)
p

]
dV

By identification, we obtain:
(
∂p
∂V

)
T

+
(
∂p
∂T

)
V

(
∂T
∂V

)
p

= 0(
∂p
∂T

)
V

(
∂T
∂p

)
V

= 1 =⇒
(
∂p
∂T

)
V

= 1

(∂T∂p )
V

. . . (5)

From (4) and (5), we have:(
∂V

∂T

)
p

(
∂T

∂p

)
V

= −
(
∂V

∂p

)
T

=⇒ 1(
∂T
∂V

)
p

· 1(
∂p
∂T

)
V

= −
(
∂V

∂p

)
T(

∂V

∂p

)
T

(
∂p

∂T

)
V

(
∂T

∂V

)
p

= −1 . . . (6)
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Case 2: Substituting (2) into (1) and (3)

(2) into (1):

Substituting dp from (2) into (1):

dV =

(
∂V

∂p

)
T

[(
∂p

∂V

)
T

dV +

(
∂p

∂T

)
V

dT

]
+

(
∂V

∂T

)
p

dT

Expanding:

dV =

(
∂V

∂p

)
T

(
∂p

∂V

)
T

dV +

[(
∂V

∂p

)
T

(
∂p

∂T

)
V

+

(
∂V

∂T

)
p

]
dT

By identification, we obtain:
(
∂V
∂p

)
T

(
∂p
∂T

)
V

+
(
∂V
∂T

)
p

= 0(
∂V
∂p

)
T

(
∂p
∂V

)
T

= 1 =⇒
(
∂V
∂p

)
T

= 1

( ∂p∂V )
T

. . . (7)

(2) into (3):

Substituting dp from (2) into (3):

dT =

(
∂T

∂p

)
V

[(
∂p

∂V

)
T

dV +

(
∂p

∂T

)
V

dT

]
+

(
∂T

∂V

)
p

dV

Expanding:

dT =

(
∂T

∂p

)
V

(
∂p

∂T

)
V

dT +

[(
∂T

∂p

)
V

(
∂p

∂V

)
T

+

(
∂T

∂V

)
p

]
dV

By identification, we obtain:
(
∂T
∂p

)
V

(
∂p
∂V

)
T

+
(
∂T
∂V

)
p

= 0(
∂T
∂p

)
V

(
∂p
∂T

)
V

= 1 =⇒
(
∂T
∂p

)
V

= 1

( ∂p∂T )
V

. . . (8)

From (7) and (8), we have:(
∂V

∂p

)
T

(
∂p

∂T

)
V

= −
(
∂V

∂T

)
p

=⇒ 1(
∂p
∂V

)
T

· 1(
∂T
∂p

)
V

= −
(
∂V

∂T

)
p(

∂V

∂T

)
p

(
∂p

∂V

)
T

(
∂T

∂p

)
V

= −1 . . . (9)

Case 3: Substituting (1) into (2) and (3)

(1) into (2):

Substituting dV from (1) into (2):

dp =

(
∂p

∂V

)
T

[(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT

]
+

(
∂p

∂T

)
V

dT
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Expanding:

dp =

(
∂p

∂V

)
T

(
∂V

∂p

)
T

dp+

[(
∂p

∂V

)
T

(
∂V

∂T

)
p

+

(
∂p

∂T

)
V

]
dT

By identification, we obtain:
(
∂p
∂V

)
T

(
∂V
∂T

)
p

+
(
∂p
∂T

)
V

= 0(
∂p
∂V

)
T

(
∂V
∂p

)
T

= 1 =⇒
(
∂p
∂V

)
T

= 1

(∂V∂p )
T

. . . (10)

(1) into (3):

Substituting dV from (1) into (3):

dT =

(
∂T

∂p

)
V

dp+

(
∂T

∂V

)
p

[(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT

]
Expanding:

dT =

(
∂T

∂V

)
p

(
∂V

∂T

)
p

dT +

[(
∂T

∂p

)
V

+

(
∂T

∂V

)
p

(
∂V

∂p

)
T

]
dp

By identification, we obtain:
(
∂T
∂p

)
V

+
(
∂T
∂V

)
p

(
∂V
∂p

)
T

= 0(
∂T
∂V

)
p

(
∂V
∂T

)
p

= 1 =⇒
(
∂T
∂V

)
p

= 1

(∂V∂T )
p

. . . (11)

From (10) and (11), we have:(
∂p

∂V

)
T

(
∂V

∂T

)
p

+

(
∂p

∂T

)
V

= 0 =⇒ 1(
∂V
∂p

)
T

· 1(
∂T
∂V

)
p

= −
(
∂p

∂T

)
V(

∂p

∂T

)
V

(
∂V

∂p

)
T

(
∂T

∂V

)
p

= −1 . . . (12)

0.0.53 Exercise 27

A container holds 10 liters of water at T0 = 60◦C.

• What volume of water at T0 = 15◦C must be added to obtain water at T0 =
30◦C?

• In the container with 10 liters of water at 60◦C, a piece of ice with mass
M = 800 g at Tg = 0◦C is added. What is the final temperature of the
mixture?

• In the container with 10 liters of water at 60◦C, a resistor R = 600 Ω carrying
a current I = 1.2 A is immersed.
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• How long will it take to bring the water to boiling?

• Once boiling is reached, how long will it take to vaporize 0.5 liters of water?

Assume negligible losses and constant pressure of 1 atm. Given: CPe = 4.18 kJ ·
kg−1 · K−1, LV = 2260 kJ · kg−1, LF = 334 kJ · kg−1, CPg = 2.09 kJ · kg−1 · K−1,
ρe = 1 kg ·m−3, ρg = 917 kg ·m−3.

0.0.54 Solution to Exercise 27

1. Mixing Water at Different Temperatures

Given:

• Initial volume of hot water, V1 = 10 L at T1 = 60◦C.

• Cold water temperature, T2 = 15◦C.

• Desired final temperature, Tf = 30◦C.

• Density of water, ρe = 1 kg/L.

• Specific heat capacity of water, CPe = 4.18 kJ · kg−1 ·K−1.

Volume of cold water (V2) to add.
The heat lost by the hot water equals the heat gained by the cold water:

m1CPe(T1 − Tf ) = m2CPe(Tf − T2)

Since m = ρV , and ρ cancels out:

10 kg · (60− 30) = V2 · (30− 15)

300 = 15V2

V2 =
300

15
= 20 L

V2 = 20 L

2. Adding Ice to Hot Water

Given:

• Mass of ice, mg = 800 g = 0.8 kg at Tg = 0◦C.

• Latent heat of fusion, LF = 334 kJ/kg.

• Specific heat capacity of ice, CPg = 2.09 kJ · kg−1 ·K−1.

• Initial water mass, me = 10 kg at 60◦C.

Final temperature (Tf) of the mixture.
First, check if all the ice melts:

Heat required to melt ice: Qmelt = mgLF = 0.8× 334 = 267.2 kJ
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Heat released by water cooling to 0◦C: Qwater = meCPe(60−0) = 10×4.18×60 = 2508 kJ

Since Qwater > Qmelt, all ice melts. Now, find Tf :

Total heat absorbed by ice: Qice = mgLF +mgCPe(Tf − 0)

Heat lost by water: Qwater = meCPe(60− Tf )

Setting Qwater = Qice:

10× 4.18× (60− Tf ) = 0.8× 334 + 0.8× 4.18× Tf

2508− 41.8Tf = 267.2 + 3.344Tf

2508− 267.2 = 41.8Tf + 3.344Tf

2240.8 = 45.144Tf

Tf =
2240.8

45.144
≈ 49.6◦C

Tf = 49.6◦C

3. Heating Water with a Resistor

Given:

• Resistance, R = 600 Ω.

• Current, I = 1.2 A.

• Initial water temperature, T0 = 60◦C.

• Boiling point, Tb = 100◦C.

• Mass of water, m = 10 kg.

• Specific heat capacity, CPe = 4.18 kJ · kg−1 ·K−1.

Time (t) to reach boiling.
Power dissipated by the resistor:

P = I2R = (1.2)2 × 600 = 864 W = 0.864 kW

Heat required to boil the water:

Q = mCPe(Tb − T0) = 10× 4.18× (100− 60) = 1672 kJ

Time required:

t =
Q

P
=

1672

0.864
≈ 1935 s ≈ 32.25 min

Answer: t = 1935 s
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4. Vaporizing Water

Given:

• Volume to vaporize, V = 0.5 L.

• Mass, m = 0.5 kg (since ρe = 1 kg/L).

• Latent heat of vaporization, LV = 2260 kJ/kg.

• Power, P = 0.864 kW.

Time (t) to vaporize 0.5 L.
Heat required for vaporization:

Q = mLV = 0.5× 2260 = 1130 kJ

Time required:

t =
Q

P
=

1130

0.864
≈ 1308 s ≈ 21.8 min

Answer: t = 1308 s

0.0.55 Exercise 28

A closed container with a movable piston contains 2 g of helium (an ideal monatomic
gas) under conditions (P1, V1). A reversible adiabatic compression is performed,
bringing the gas to conditions (P2, V2). Given: P1 = 1 bar, V1 = 10 l, P2 = 3 bar.

• Determine the final volume V2 of the gas.

• Calculate the work exchanged by the gas with the surroundings.

• Determine the change in internal energy of the gas.

• Deduce the change in temperature of the gas without calculating its initial
temperature.

Given: γ = Cp
Cv

= 5
3 , R = 8.32 J ·K−1 ·mol−1.

0.0.56 Solution to Exercise 28

Final Volume of the Gas V2:

Adiabatic transformation ⇒ pV γ = constant.

p1V
γ

1 = p2V
γ

2 ⇒ V γ
2 =

p1

p2
V γ

1

⇒ V2 =

(
p1

p2

) 1
γ

V1

Numerical Application (N.A.): V2 = 5.17 L.
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Work Done by the Gas:

First, differentiate the expression pV γ = constant:

V γdp+ γpV γ−1dV = 0

The work is: δW = −pdV .

⇒ W = −
∫ V2

V1

pdV = −
∫ V2

V1

constant

V γ
dV = −constant

∫ V2

V1

dV

V γ
= −constant

V 1−γ

1− γ

∣∣∣∣V2
V1

=
constant

1− γ

(
V 1−γ

1 − V 1−γ
2

)
=

1

1− γ

(
V1

constant

V γ
1

− V2
constant

V γ
2

)

⇒ W =
1

1− γ
(V1p1 − V2p2)

N.A.: W = 826.5 J.

Change in Internal Energy of the Gas:

Adiabatic transformation ⇒ Q = 0.

∆U = W +Q = W =
1

1− γ
(V1p1 − V2p2)

⇒ ∆U =
1

1− γ
(V1p1 − V2p2)

N.A.: ∆U = 826.5 J.

Change in Temperature:

∆U = nCV ∆T ⇒ ∆T =
∆U

nCV

With n = m
M , where m is the mass of the gas and M is the molar mass of the

gas.

CV =
R

γ − 1
(molar heat capacity at constant volume)

⇒ ∆T =

1
1−γ (V1p1 − V2p2)

m
M

R
γ−1

=
M (V2p2 − V1p1)

mR

N.A.: ∆T = −198.67 K.
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0.0.57 Exercise 29

Consider one mole of an ideal gas with a constant ratio γ = Cp
Cv

. The gas undergoes
a polytropic transformation from state 1 (P1, V1, T1) to state 2 (P2, V2, T2).

• Show that the work exchanged W is given by:

W =
P2V2 − P1V1

k − 1

• Show that the heat Q is given by:

Q = Cm(T2 − T1)

Express Cm in terms of k and γ.

0.0.58 Solution to Exercise 29

Work:

Polytropic transformation pV K = constant, assuming this constant is A.

⇒ p =
A

V K

W = −
∫ V2

V1

pdV = −A
∫ V2

V1

dV

V K
= −A V 1−K

1−K

∣∣∣∣V2
V1

=
1

1−K

(
V1

A

V K
1

− V2
A

V K
2

)

⇒ W =
1

1−K
(V1p1 − V2p2) =

1

K − 1
(V2p2 − V1p1)

Heat:

δQ = dU−δW = nCV dT+pdV ⇒ Q = ∆U−W = nCV (T2−T1)− 1

K − 1
(V2p2 − V1p1)

For one mole: {
V1p1 = RT1

V2p2 = RT2

Thus,

Q = nCV (T2 − T1)− 1

K − 1
(RT2 −RT1) = nCV (T2 − T1)− R

K − 1
(T2 − T1)

⇒ Q = (T2 − T1)

(
nCV −

R

K − 1

)
Thus, the heat can be written as: Q = Cm(T2 − T1), where:
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Cm = nCV −
R

K − 1

With CV = R
γ−1 and n = 1 (1 mole), we obtain:

⇒ Cm =
R

γ − 1
− R

K − 1
= R

K − γ
(γ − 1)(K − 1)

0.0.59 Exercise 30

A compression from 1 bar to 10 bars is performed on one liter of air, assumed to be
an ideal gas initially at room temperature 20◦C. The compression is rapid enough
that the container does not have time to dissipate heat during the compression
(dQ = 0).

• Determine the final temperature T2 (corresponding to the state at 10 bars).

• Determine the final volume V2 of the gas.

• Determine the change in internal energy of the gas.

Given for air: γ = 1.4, r = 287.1 J ·K−1 · kg−1, cV = 0.55 J ·K−1 · kg−1.

0.0.60 Solution to Exercise 30

Final Temperature T2:

dQ = 0⇔ Adiabatic transformation

⇒ pV γ = constant

Since the gas is ideal, we can write: pV = nRT ⇒ V = nRT
p .

Thus,

⇒ pV γ = p

(
nRT

p

)γ
= (nRT )γp1−γ = constant

⇒ T γp1−γ = constant

Therefore, from the initial to the final state, we can write:

T γ1 p
1−γ
1 = T γ2 p

1−γ
2 ⇒ T γ2 = T γ1

p1−γ
1

p1−γ
2

⇒ T2 = T1

(
p1

p2

) 1−γ
γ

N.A.: T2 = 10.36 ◦C = 283.36 K.
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Final Volume of the Gas V2:

p1V
γ

1 = p2V
γ

2 ⇒ V γ
2 =

p1

p2
V γ

1

⇒ V2 =

(
p1

p2

) 1
γ

V1

N.A.: V2 = 0.19 L.

Change in Internal Energy of the Gas:

∆U = Q+W = 0 +W = W = mcV ∆T

Where m is the mass of the gas and cV is the specific heat capacity at constant
volume.

The ideal gas equation is: pV = nRT = m
MRT = mrT , where r is the specific

gas constant.

⇒ pV = mrT ⇒ p1V1 = mrT1 ⇒ m =
p1V1

rT1

⇒ ∆U = mcV ∆T =
p1V1

rT1
cV (T2 − T1)

N.A.: ∆U = 0.2 J.

0.0.61 Exercise 31

A mass m = 5 kg of helium gas (MHe = 4 g ·mol−1) undergoes a reversible poly-
tropic expansion in a closed system from an initial pressure P1 = 10 bar and tem-
perature T1 = 400◦C to a final pressure P2 = 2 bar and temperature T2 = 120◦C.
The helium gas is assumed to be ideal. Calculate:

• The volumes V1 and V2.

• The coefficient k.

• The work exchanged by the gas W .

• The heat Q.

0.0.62 Solution to Exercise 31

Calculation of Volumes V1 and V2:

Ideal gas ⇒ {
p1V1 = nRT1

p2V2 = nRT2

⇒

{
V1 = nRT1

p1
= m

M
RT1
p1

V2 = nRT2
p2

= m
M

RT2
p2

N.A.: {
V1 = 7 m3

V2 = 20.44 m3
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Coefficient K:

Polytropic transformation ⇒ pV K = constant.

⇒ p1V
K

1 = p2V
K

2 ⇒
(
V1

V2

)K
=
p2

p1
⇒ ln

(
V1

V2

)K
= ln

(
p2

p1

)
⇒ K ln

(
V1

V2

)
= ln

(
p2

p1

)

⇒ K =
ln
(
p2
p1

)
ln
(
V1
V2

)
N.A.: K = 1.5.

Work Exchanged by the Gas:

W = −
∫ V2

V1

pdV

Polytropic transformation ⇒ pV K = constant = A ⇒ p = A
V K

. Substituting
into the previous expression, we obtain:

W = −
∫ V2

V1

pdV = −A
∫ V2

V1

dV

V K
= A

V 1−K

1−K

∣∣∣∣V2
V1

=
A

1−K
(
V 1−K

1 − V 1−K
2

)
=

1

1−K

(
V1

A

V K
1

− V2
A

V K
2

)
⇒ W =

1

1−K
(V1p1 − V2p2)

N.A.: W = −5824× 103 J. Work is transferred to the surroundings.

Quantity of Heat:

∆U = Q+W = mcV ∆T = mcV (T2 − T1)

⇒ Q = mcV (T2 − T1)−W
N.A.: Q = 5806528 J.

0.0.63 Exercise 32

A cylinder contains one mole of an ideal monatomic gas that undergoes a reversible
cycle consisting of three transformations: an isothermal transformation (1-2), an
isobaric transformation (2-3), and an isochoric transformation (3-1). Given: T1 =
300 K, P1 = 1 bar, P2 = 5 bar.

• Is the cycle (1-2-3-1) a power cycle or a refrigeration cycle? Justify your
answer.

57



Exercices and solutions

Figure 12: The cycle 1.

• Calculate:

– The volumes V1, V2, and V3.

– The temperature T3 of state (3).

– The work W12, W23, and W31 involved in the cycle.

– The heat Q12, Q23, and Q31 exchanged by the gas during the cycle.

– The total work W and total heat Q received during the cycle. Is the first
principle, applied to the cycle (1-2-3-1), verified?

• Deduce the efficiency of the cycle.

Given: CV = 3
2nR, R = 8.32 J ·K−1 ·mol−1, n = 1 mol.

0.0.64 Solution to Exercise 32

Type of Cycle:

The cycle (1-2-3-1) is clockwise, so it is a power cycle.

Volumes:

For state (1), the volume is V1. For one mole of an ideal gas, we have:

p1V1 = RT1 =⇒ V1 =
RT1

p1

Numerical Application (N.A.): V1 = 0.0249 m3.
For state (2), the volume is V2 and the pressure is p2. The transformation (1-2)

is isothermal (T1 = constant):

p1V1 = RT1 and p2V2 = RT1 =⇒ p1V1 = p2V2 =⇒ V2 = V1
p1

p2

N.A.: V2 = 0.0048 m3.
For state (3), the volume is V1 and the pressure is p2. The transformation (3-1)

is isochoric (V1 = V3 = 0.0249 m3).

58



Exercices and solutions

Temperature of State (3):

State (3): (V1, p2, T3) =⇒ p2V1 = RT3 =⇒ T3 = p2V1
R . N.A.: T3 = 1497 K.

Work:

δW = −p dV
(1-2) Isothermal transformation (T = T1 = constant):

W12 = −
∫ 2

1

p dV = −RT
∫ 2

1

dV

V
= −RT lnV

∣∣∣∣V1
V2

=⇒ W12 = RT ln

(
V1

V2

)
N.A.: W12 = 4143 J.

(2-3) Isobaric transformation (p = p2 = constant):

W23 = −
∫ 3

2

p dV = −p2

∫ 3

2

dV = p2(V2 − V1) =⇒ W23 = p2(V2 − V1)

N.A.: W23 = −10050 J.
(3-1) Isochoric transformation (V = constant =⇒ dV = 0):

W31 = 0.

Heat:

For an ideal gas, dU = ncV dT (First Law of Joule).
(1-2) Isothermal transformation (dT = 0):

∆U = 0 = Q12 +W12 =⇒ Q12 = −W12 = −4143 J.

(2-3) Isobaric transformation:

dU = cV dT =⇒ ∆U = cV (T3 − T2) = Q23 +W23 =⇒ Q23 = cV (T3 − T2)−W23.

N.A.: Q23 = 24978 J.
(3-1) Isochoric transformation:

∆U = cV (T1 − T3) = Q31 +W31 = Q31 =⇒ Q31 = cV (T1 − T3).

N.A.: Q31 = −14928 J.

Total Work and Total Heat:

W = W12 +W23 +W31 = 4143− 10050 + 0 = −5907 J.

Q = Q12 +Q23 +Q31 = −4143 + 24978− 14928 = +5907 J.

For a closed cycle, the change in internal energy is zero (∆U = W +Q = 0), and
the First Law of Thermodynamics is verified.

Efficiency of the Cycle:

ρ = − W

Qreceived
= 0.236 =⇒ ρ ≈ 24%.
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0.0.65 Exercise 33

One mole of an ideal gas undergoes the cycle represented in the figure below,
consisting of two isobaric and two isochoric processes. Let P2 > P1 and V2 > V1.

Figure 13: The cycle 2.

• In which direction should the cycle be traversed to act as a power cycle?

• Calculate the work involved in one cycle as a function of the pressures and
volumes.

• Determine the temperatures at the vertices of the cycle if P2 = 2P1 = 2 atm
and V2 = 2V1 = 20 l.

• Calculate the efficiency of a Carnot engine operating between temperatures
TB and TD.

Given: R = 8.32 J ·K−1 ·mol−1, 1 atm = 105 Pa.

0.0.66 Solution to Exercise 33

To Have an Engine:

The cycle must be traversed clockwise.

Total Work:

W12 = 0 and W34 = 0 (isochoric transformations).

W23 = −p2

∫ 3

2

dV = −p2(V2 − V1) = p2(V1 − V2) =⇒ W23 = p2(V1 − V2).

W41 = −p2

∫ 1

4

dV = −p1(V1 − V2) = p1(V2 − V1) =⇒ W41 = p1(V2 − V1).

W = W12 +W23 +W34 +W41 = p2(V1 − V2) + p1(V2 − V1) = (V2 − V1)(p1 − p2).
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Temperatures if p2 = 2p1 = 2 atm and V2 = 2V1 = 20 L:

Vertex (1): p1V1 = RT1 =⇒ T1 = p1V1
R . N.A.: T1 = TD = 120 K.

Vertex (2): p2V1 = RT2 =⇒ T2 = p2V1
R . N.A.: T2 = TA = 240.4 K.

Vertex (3): p2V2 = RT3 =⇒ T3 = p2V2
R . N.A.: T3 = TB = 480.8 K.

Vertex (4): p1V2 = RT4 =⇒ T4 = p1V2
R . N.A.: T4 = TC = 240.4 K.

Efficiency of the Machine Between TB and TD:

ρ = −Wprovided

Qreceived
= −−(Q1 +Q2)

Q2
=
Q1

Q2
+ 1.

According to the Second Law of Thermodynamics: S1 +S2 = 0 ⇐⇒ Q1

T1
+ Q2

T2
= 0.

=⇒ Q1

Q2
= −T1

T2
=⇒ ρ =

Q1

Q2
+ 1 = 1− T1

T2
.

N.A.: ρ = 0.75 = 75%.

0.0.67 Exercise 34

Two isolated systems, labeled 1 and 2, initially at temperatures T1 and T2, with
heat capacities at constant pressure CP1 and CP2, are brought into thermal con-
tact, with the pressure remaining constant during the process. After a sufficiently
long time, an equilibrium state is reached where both systems have the same tem-
perature Tf .

• Is the transformation reversible? Justify your answer.

• Calculate the heat Q1 and Q2 exchanged by each system, and show that the
final temperature is:

Tf =
CP1T1 + CP2T2

CP1 + CP2

• Determine the expressions for the entropy changes ∆S1 and ∆S2 of each sys-
tem and ∆S of the combined system.

• In the case T1 > T2, what are the signs of ∆S1, ∆S2, and ∆S?

• Determine the expression for ∆S in the case CP1 = CP2 = CP , as a function
of CP , T1, and T2.

0.0.68 Solution to Exercise 34

The Transformation is Irreversible:

The transformation is irreversible because it is not possible to return to the initial
state by the same path.
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Heat Quantities Q1 and Q2:

Q1 = cp1∆T = cp1(Tf − T1) (heat quantity of system 1).

Q2 = cp2∆T = cp2(Tf − T2) (heat quantity of system 2).

At equilibrium:
∑
Q = 0 =⇒ Q1 + Q2 = 0 =⇒ cp1(Tf − T1) + cp2(Tf − T2) =

0 =⇒ Tf (cp1 + cp2) = cp1T1 + cp2T2.

=⇒ Tf =
cp1T1 + cp2T2

cp1 + cp2
.

Expressions for Entropy Changes ∆S1 and ∆S2:

dS =
δQ

T
=⇒ ∆S1 = cp1

∫ Tf

T1

δT

T
= cp1 lnT

∣∣∣∣T1
Tf

= cp1 ln

(
Tf
T1

)
.

∆S2 = cp2

∫ Tf

T2

δT

T
= cp2 lnT

∣∣∣∣T2
Tf

= cp2 ln

(
Tf
T2

)
.

Thus, the total entropy is:

∆S = ∆S1 + ∆S2 = cp1 ln

(
Tf
T1

)
+ cp2 ln

(
Tf
T2

)
.

Case T1 > T2: Signs of ∆S1, ∆S2, and ∆S:

If T1 > Tf > T2, then:

ln

(
Tf
T1

)
< 0 =⇒ ∆S1 < 0, ln

(
Tf
T2

)
> 0 =⇒ ∆S2 > 0.

Thus, ∆S1 is negative and ∆S2 is positive.

ln

(
Tf
T1

)
< 0 < ln

(
Tf
T2

)
=⇒ cp1 ln

(
Tf
T1

)
< 0 < cp2 ln

(
Tf
T2

)
=⇒ ∆S > 0.

Thus, ∆S is positive.

Expression for ∆S if cp1
= cp2

= cp:

∆S = cp1 ln

(
Tf
T1

)
+cp2 ln

(
Tf
T2

)
= cp

[
ln

(
Tf
T1

)
+ ln

(
Tf
T2

)]
= cp ln

[(
Tf
T1

)(
Tf
T2

)]
.

With Tf = T1+T2
2 , we have:

∆S = cp ln

[
(T1 + T2)2

4T1T2

]
.
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0.0.69 Exercise 35

A block of copper with mass m = 2 kg and temperature Tc = 50◦C is placed in an
infinite medium at temperature Tm = 25◦C. Under these conditions, the copper
block cools from Tc to Tm. The specific heat of copper is c = 385 J · kg−1 ·K−1.

• Calculate the heat Q exchanged by the copper block.

• Calculate the entropy change ∆S of this cooling process.

• Calculate the external entropy change ∆Se.

• Calculate the created entropy ∆Sc.

0.0.70 Solution to Exercise 35

Heat Quantity Q Exchanged by the Block:

Q = mc∆T = mc(Tm − Tc).
N.A.: Q = 2.385× (25− 50) = −19250 J = −19.25 kJ.

Entropy ∆S of Cooling:

dS =
δQ

T
= mc

δT

T
=⇒ ∆S = mc

∫ Tm

Tc

dT

T
= mc ln

(
Tm
Tc

)
.

N.A.: ∆S = −62.03 J ·K−1.

Entropy Se Exchanged with the Exterior:

∆Se =

∫
δQ

Text
=

1

Tm

∫
δQ =

Q

Tm
.

N.A.: ∆Se = −19250
25+273 = −64.60 J ·K−1.

Created Entropy ∆Sc:

∆S = ∆Se + ∆Sc =⇒ ∆Sc = ∆S −∆Se.

N.A.: ∆Sc = −62.03 + 64.60 = 2.57 J ·K−1.

0.0.71 Exercise 36

During an infinitesimal reversible transformation of a thermodynamic system, the
heat exchange δQ with the surroundings takes the following equivalent forms (for
one mole):

δQ = CV dT + ldV

δQ = CPdT + hdP

• Differentiate dV and prove the relation:

CP − CV = l

(
∂V

∂T

)
P
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• Calculate the differentials dU and dS as functions of the independent variables
T and V . Using the fact that dU and dS are exact differentials, show that:

l = T

(
∂P

∂T

)
V(

∂CV
∂V

)
T

= T

(
∂2P

∂T 2

)
V

• What do these two relations become in the case of an ideal gas?

0.0.72 Solution to Exercise 36

The differential dV :

V varies as a function of p and T , so:

dV =

(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT

We have:

δQ = CV dT + l dV = CV dT + l

[(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT

]

⇒ δQ =

[
CV + l

(
∂V

∂T

)
p

]
dT + l

(
∂V

∂p

)
T

dp

And:
δQ = CpdT + h dp

By comparison, we find:

Cp = CV + l

(
∂V

∂T

)
p

⇒ Cp − CV = l

(
∂V

∂T

)
p

The differentials dU and dS as functions of T and V :

First principle:
dU = δW + δQ = −p dV + CV dT + l dV

⇒ dU = CV dT + (l − p)dV
Second principle:

dS =
δQ

T
=
CV
T
dT +

l

T
dV

dU is an exact differential: (
∂CV
∂V

)
T

=

(
∂(l − p)
∂T

)
V
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dS is an exact differential:(
∂(CV /T )

∂V

)
T

=

(
∂(l/T )

∂T

)
V

We obtain the following system of equations:
(
∂CV
∂V

)
T

=
(
∂l
∂T

)
V
−
(
∂p
∂T

)
V

1
T

(
∂CV
∂V

)
T

= 1
T 2

[
T
(
∂l
∂T

)
V
− l
]

⇒
(
∂CV
∂V

)
T

=
(
∂l
∂T

)
V
− l

T

⇒
(
∂p

∂T

)
V

=
l

T
⇒ l = T

(
∂p

∂T

)
V

Substituting into the first equation of the system, we obtain:(
∂CV
∂V

)
T

=

(
∂l

∂T

)
V

−
(
∂p

∂T

)
V

=

(
∂T

∂T

)
V

(
∂p

∂T

)
V

+T

(
∂2p

∂T 2

)
V

−
(
∂p

∂T

)
V

= T

(
∂2p

∂T 2

)
V

⇒
(
∂CV
∂V

)
T

= T

(
∂2p

∂T 2

)
V

The case of an ideal gas:

pV = nRT ⇒ p =
nRT

V
⇒

(
∂p

∂T

)
V

=
nR

V
⇒

(
∂2p

∂T 2

)
V

= 0

⇒

{
l = T

(
∂p
∂T

)
V

= nRT
V = p ⇒ l = p(

∂CV
∂V

)
T

= 0 ⇒ CV = constant

0.0.73 Exercise 37

Consider an ideal gas undergoing an isobaric transformation from state (1) to
state (2) in a closed system. The heat capacity at constant pressure CP of the gas
depends on temperature according to the equation:

CP = αT + β

where α and β are constants.

• Express the entropy change ∆S12 of this transformation as a function of α, β,
T1, and T2.

0.0.74 Solution to Exercise 37

Isobaric transformation (p = constant) of an ideal gas.

Cp = αT + β (heat capacity at constant pressure).
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The entropy variation ∆S12 as a function of α, β, T1, and T2:

Second principle:

dS =
δQ

T
=

1

T
(CV dT + l dV ).

Where Cp − CV = nR (Mayer’s relation).{
l = p

pV = nRT
⇒ for an ideal gas.

dS = CV
dT

T
+
p

T
dV = (Cp − nR)

dT

T
+ nR

dV

V

⇒ ∆S12 =

∫ 2

1

Cp
dT

T
−nR

∫ 2

1

dT

T
+nR

∫ 2

1

dV

V
=

∫ 2

1

(αT+β)
dT

T
−nR

∫ 2

1

dT

T
+nR

∫ 2

1

dV

V

= α

∫ 2

1

dT + β

∫ 2

1

dT

T
− nR

∫ 2

1

dT

T
+ nR

∫ 2

1

dV

V

= α(T2 − T1) + β ln

(
T2

T1

)
− nR ln

(
T2

T1

)
+ nR ln

(
V2

V1

)
For an isobaric transformation:{

pV1 = nRT1

pV2 = nRT2

⇒ V2

V1
=
T2

T1

⇒ ∆S12 = α(T2−T1)+β ln

(
T2

T1

)
−nR ln

(
T2

T1

)
+nR ln

(
T2

T1

)
= α(T2−T1)+β ln

(
T2

T1

)
⇒ ∆S12 = α(T2 − T1) + β ln

(
T2

T1

)
0.0.75 Exercise 38

Consider one mole of carbon dioxide CO2 with the Van der Waals equation of
state:

(P +
a

V 2
)(V − b) = RT

where a and b are positive constants.

• Given the heat exchanged by the gas during a reversible infinitesimal trans-
formation:

δQ = CV dT + ldV

where CV is the molar specific heat at constant volume of CO2 and l =
T
(
∂P
∂T

)
V

. Calculate l.

• Calculate the infinitesimal change in internal energy dU .

• Calculate the change in internal energy ∆U of the carbon dioxide between the
initial state A(V1, T1) and the final state B(V2, T2), assuming CV is constant.
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• Determine the temperature change ∆T = T2 − T1 during an isoenergetic
expansion (U = constant). Conclusion?

Given: a = 0.366 J·m3·mol−2, b = 4.29×10−5 m3·mol−1, V1 = 0.2×10−2 m3·mol−1,
V2 = 3× 10−2 m3 ·mol−1, T1 = 293 K, CV = 28.5 J ·mol−1 ·K−1.

0.0.76 Solution to Exercise 38

Calculation of l:

l = T

(
∂p

∂T

)
V

We have:(
p+

a

V 2

)
(V −b) = RT ⇒ p(V −b)+

a

V 2
(V −b) = RT ⇒ p =

RT

V − b
− a

V 2

⇒
(
∂p

∂T

)
V

=
R

V − b
⇒ l =

RT

V − b
= p+

a

V 2

⇒ l = p+
a

V 2

The elementary variation dU :

dU = δQ+ δW = CV dT + l dV − p dV = CV dT + (l − p)dV

⇒ dU = CV dT +
a

V 2
dV

The variation ∆U :

∆U = CV

∫ 2

1

dT + a

∫ 2

1

dV

V 2
= CV (T2 − T1)− a 1

V

∣∣∣∣V2
V1

⇒ ∆U = CV (T2 − T1)− a
(

1

V2
− 1

V1

)
The variation ∆T :

Isoenergetic expansion (U = constant) ⇒ ∆U = 0.

⇒ CV (T2 − T1)− a
(

1

V2
− 1

V1

)
= 0 ⇒ (T2 − T1) =

a

CV

(
1

V2
− 1

V1

)

⇒ ∆T =
a

CV

(
1

V2
− 1

V1

)
Numerical application:

∆T =
0.366

28.5

(
1

0.03
− 1

0.002

)
= −5.99 ≈ −6 K ⇒ ∆T < 0.

Thus, the isoenergetic expansion cooled the CO2.
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0.0.77 Exercise 39

In an infinitesimal reversible transformation, the heat received by one mole of
oxygen (an ideal gas) is given by:

δQ = CPdT − V dP

• Write the infinitesimal entropy change dS of the oxygen.

• The molar specific heat of oxygen at constant pressure follows the law:

CP = a+ bT + cT 2

Calculate the final pressure of the oxygen compressed adiabatically and re-
versibly (isentropically) from the initial state (T0 = 273 K, P0 = 1 atm) to the
temperature T = 1000 K.

Given: R = 8.32 J · mol−1 · K−1, a = 26.2 J · mol−1 · K−1, b = 11.493 × 10−3 J ·
mol−1 ·K−2, c = −3.222× 10−6 J ·mol−1 ·K−3.

0.0.78 Solution to Exercise 39

The elementary variation dS of O2:

dS =
δQ

T
= Cp

dT

T
+
h

T
dp

Calculation of the final pressure:

Reversible adiabatic transformation (δQ = 0) ⇒ Isentropic transformation (dS =
0).

⇒ CpdT + h dp = 0 ⇒ CpdT = −h dp

dS = 0 ⇒ Cp
dT

T
+
h

T
dp = 0 ⇒ Cp

dT

T
= −h

T
dp

Where Cp = a+ bT + cT 2, h = −V , and V
T = R

p . Thus:

Cp
dT

T
= −h

T
dp ⇔ (a+ bT + cT 2)

dT

T
=
V

T
dp ⇔ (a+ bT + cT 2)

dT

T
=
R

p
dp

⇒ a

∫ 2

1

dT

T
+ b

∫ 2

1

dT + c

∫ 2

1

T dT = R

∫ 2

1

dp

p

⇔ R ln

(
p

p0

)
= a ln

(
T

T0

)
+ b(T − T0) +

1

2
c(T 2 − T 2

0 )

⇒ ln

(
p

p0

)R
= ln

(
T

T0

)a
+ b(T − T0) +

1

2
c(T 2 − T 2

0 )

Taking the exponential of the last expression:(
p

p0

)R
=

(
T

T0

)a
eb(T−T0)+ 1

2c(T
2−T 2

0 ) ⇒ p

p0
=

(
T

T0

) a
R

e
1
R [b(T−T0)+ 1

2c(T
2−T 2

0 )]

68



Exercices and solutions

⇒ p = p0

(
T

T0

) a
R

e
1
R [b(T−T0)+ 1

2c(T
2−T 2

0 )]

Numerical application:

p = 1

(
1000

273

) 26.2
8.32

e
1

8.32 [0.011493(1000−273)− 1
2 ·3.222·10−6(10002−2732)] = 136.066 Pa
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Continuous assessments and
examination.

0.1 Continuous assessments.

0.1.1 Thermodynamics MCQ 1

Question 1: The First Law of Thermodynamics expresses:

a) Conservation of energy in a thermodynamic system.

b) The irreversibility of natural processes.

c) The equivalence between heat and work.

d) The increase of entropy in an isolated system.

Question 2: An isothermal process is characterized by:

a) Constant pressure.

b) Constant temperature.

c) Constant volume.

d) Zero heat exchange.

Question 3: The efficiency of a Carnot engine depends on:

a) The working substance used.

b) The temperatures of the hot and cold reservoirs.

c) The engine’s size.

d) The pressure difference in the cycle.

Question 4: Entropy is a measure of:

a) The internal energy of a system.

b) The disorder or randomness in a system.

c) The heat capacity at constant volume.

d) The enthalpy of a system.

Question 5: In an adiabatic process:

a) The temperature remains constant.

b) No heat is exchanged with the surroundings.

c) The pressure remains constant.

d) The volume remains constant.
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Continuous assessments and examination.

0.1.2 Thermodynamics MCQ 2

1. State the First Law of Thermodynamics.

2. The differential of a function f is said to be an exact total differential if it
satisfies the following condition:

3. Write the relation between P , V , and T for an ideal gas.

4. What are the three modes of heat transfer?

5. What is the relationship between the heat flux density vector and the thermal
flux?

6. What is the meaning of the negative sign () in Fourier’s Law?

7. What is the expression for the heat diffusion equation?

8. What is the unit of thermal conductivity?

9. What is the relation that gives the thermal resistance?

72
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0.1.3 Thermodynamics MCQ 3

1. What is thermodynamics?

(a) The study of material properties

(b) The study of heat transfer processes

(c) The study of fluid dynamics

(d) The study of electrical properties of materials

2. What is a thermodynamic system?

(a) A set of mathematical equations

(b) A device for measuring temperature

(c) An object in motion

(d) A collection of matter and energy with which thermal exchanges are studied

3. What is the first law of thermodynamics, also known as the law of energy
conservation?

(a) Energy cannot be created or destroyed, only transformed

(b) Heat moves from a hot body to a cold body

(c) The pressure and volume of a gas are inversely proportional

(d) The temperature of a gas is directly proportional to its pressure

4. What is an isothermal transformation?

(a) A transformation where the temperature remains constant

(b) A transformation where the pressure remains constant

(c) A transformation where the volume remains constant

(d) A transformation where the internal energy of the system remains constant

5. What is entropy?

(a) A measure of the internal energy of a system

(b) A measure of the temperature of a system

(c) A measure of disorder or chaos in a system

6. What is the formula for calculating the work done by a gas during a reversible
isothermal expansion?

(a) W = P∆V

(b) W = ∆T

(c) W = ∆U

(d) W = Q−∆U

7. What is latent heat?

(a) The heat required to increase the temperature of a substance
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(b) The heat required to change the state of a substance without changing its
temperature

(c) The heat required to melt a substance

(d) The heat required to vaporize a substance

8. What is a thermodynamic cycle?

(a) A process where the temperature remains constant

(b) A process where the volume remains constant

(c) A process where the pressure remains constant

(d) A process where a system returns to its initial state after undergoing a series
of transformations

9. How is the coefficient of thermal expansion defined?

(a) The coefficient of thermal expansion is defined as the change in volume of
a body for a given change in temperature.

(b) The coefficient of thermal expansion is defined as the change in mass of a
body for a given change in temperature.

(c) The coefficient of thermal expansion is defined as the change in length of a
body for a given change in temperature.

10. What is an adiabatic process?

(a) A process where the temperature remains constant

(b) A process where the pressure remains constant

(c) A process where no heat exchange occurs with the surroundings

(d) A process where the volume remains constant

11. What is the formula for calculating the change in internal energy ∆U of a
system?

(a) ∆U = Q−W
(b) ∆U = Q+W

(c) ∆U = Q/W

(d) ∆U = Q×W

12. What is a closed system in thermodynamics?

(a) A system that exchanges both matter and energy with the surroundings

(b) A system that exchanges only energy with the surroundings

(c) A system that exchanges neither matter nor energy with the surroundings

(d) A system that exchanges only matter with the surroundings

13. What is an open system in thermodynamics?

(a) A system that exchanges both matter and energy with the surroundings
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(b) A system that exchanges only energy with the surroundings

(c) A system that exchanges neither matter nor energy with the surroundings

(d) A system that exchanges only matter with the surroundings

14. What is a heat engine?

(a) A device that converts electrical energy into thermal energy

(b) A device that converts thermal energy into mechanical energy

(c) A device that converts thermal energy into electrical energy

(d) A device that converts mechanical energy into thermal energy

15. What is the efficiency of a heat engine?

(a) The amount of heat produced by the engine

(b) The amount of electrical energy produced by the engine

(c) The ratio of useful energy produced to the total energy supplied to the
engine

(d) The amount of fuel consumed by the engine

16. What is the Carnot cycle?

(a) A reversible thermodynamic cycle consisting of two isothermal and two
adiabatic transformations

(b) An irreversible thermodynamic cycle consisting of two isothermal and two
adiabatic transformations

(c) A reversible thermodynamic cycle consisting of two isobaric and two iso-
choric transformations

(d) An irreversible thermodynamic cycle consisting of two isobaric and two
isochoric transformations

17. What is the critical temperature of a substance?

(a) The temperature at which a substance changes state

(b) The temperature at which a substance reaches its melting point

(c) The temperature at which a substance reaches its boiling point

(d) The temperature at which a substance reaches its triple point

18. What is heat transfer by conduction?

(a) Heat transfer by the movement of a fluid

(b) Heat transfer by direct contact between two objects at different tempera-
tures

(c) Heat transfer by electromagnetic radiation

19. What is heat transfer by convection?

(a) Heat transfer by the movement of a fluid
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(b) Heat transfer by direct contact between two objects at different tempera-
tures

(c) Heat transfer by electromagnetic radiation

20. What is the heat transfer mechanism involved in heating a room with an electric
radiator?

(a) Conduction

(b) Convection

(c) Radiation

21. What is the heat transfer mechanism involved in cooling a hot object in ambient
air?

(a) Conduction

(b) Convection

(c) Radiation

22. What is thermal conductivity?

(a) The ability of a material to transfer heat by conduction

(b) The ability of a material to transfer heat by convection

(c) The ability of a material to emit electromagnetic radiation

23. The number of particles in a gas is measured in:

(a) Grams

(b) Moles

(c) Liters

(d) Joules

24. Temperature is a measure of:

(a) The momentum of a gas

(b) The average kinetic energy of the particles in a gas

(c) The speed of the particles in a gas

(d) The pressure of a gas

25. The pressure of a gas is directly proportional to:

(a) The volume of the gas

(b) The number of particles in the gas

(c) The speed of the particles in the gas

(d) The temperature of the gas
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0.1.4 Thermodynamics MCQ 4

1. Temperature is a parameter

(a) Extensive

(b) Intensive

2. Pressure is a parameter

(a) Extensive

(b) Intensive

3. Volume is a parameter

(a) Extensive

(b) Intensive

4. A closed system exchanges with its surroundings

(a) Only matter

(b) Only energy

(c) Both matter and energy

(d) Neither matter nor energy

5. An isolated system exchanges with its surroundings

(a) Only matter

(b) Only energy

(c) Both matter and energy

(d) Neither matter nor energy

6. What are the different types of transformations?

7. A reversible transformation is

(a) Fast

(b) Slow

8. An irreversible transformation is

(a) Fast

(b) Slow

(c) Quasi-static

(d) Natural

9. An isochoric transformation occurs at

(a) Constant pressure

(b) Constant volume
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(c) Constant temperature

(d) Constant heat quantity

10. Write the mathematical expression for dV as a function of T and P .

11. Write the equation of state for an ideal gas.

12. In the ideal gas model, molecules are considered as

(a) Point particles

(b) Masses with spatial dimensions

13. Internal energy U is a

(a) State function

(b) Physical quantity

14. Write the first principle of thermodynamics.

15. What are the different modes of heat transfer?

16. Thermal conduction is

(a) Accompanied by the displacement of matter

(b) Occurs without the displacement of matter

17. Thermal convection is

(a) Accompanied by the displacement of matter

(b) Occurs without the displacement of matter

18. Heat transfer always occurs from

(a) Hot to cold

(b) Cold to hot

(c) All answers are incorrect

19. During the compression of an ideal gas (e.g., in a piston)

(a) It receives work

(b) It supplies work

(c) The work is negative

(d) The work is positive
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0.1.5 Thermodynamics MCQ 5

1. Pressure P is a state function, therefore:

(a) � The differential dP is exact

(b) � The differential dP is inexact

(c) � A differential can be exact or inexact

2. The internal energy of an ideal gas is:

(a) � A function of temperature T only

(b) � A function of both T and P

(c) � Never a function of volume

3. The change in internal energy during adiabatic compression of a gas is expressed
by work W and equals:

(a) � ∆U = W

(b) � ∆U = −W
(c) � ∆U = 0

4. Fourier’s Law describes the relationship between:

(a) � Heat flux and temperature gradient

(b) � Flux density and heat flux

(c) � Pressure and volume of a gas

5. Fourier’s Law applies to heat transfer by:

(a) � Convection

(b) � Conduction

(c) � Both convection and conduction

(d) � Fluid motion

6. Thermal conductivity is:

(a) � A negative property of the medium

(b) � A positive property of the medium

(c) � An integer that can degrade

7. The phenomenon of thermal convection:

(a) � Involves displacement of matter

(b) � Occurs only in solids

(c) � Occurs in fluids

8. The direction of the heat flux density vector indicates:

(a) � The direction of heat transfer (from hot to cold)
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(b) � Increasing temperature

(c) � The direction opposite to the temperature gradient

9. The heat flux density vector and temperature gradient vector have the same
direction:

(a) � True

(b) � False

10. The heat equation describes temperature variation:

(a) � In space

(b) � In time

(c) � In both space and time
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0.1.6 Thermodynamics MCQ 6

1. What are the three modes of heat transfer?

(a) Convection, radiation, diffusion

(b) Conduction, radiation, advection

(c) Convection, conduction, radiation

2. Which of these heat transfer modes requires a material medium to propagate?

(a) Convection

(b) Radiation

(c) Conduction

3. Which heat transfer mode occurs in moving fluids?

(a) Conduction

(b) Radiation

(c) Convection

4. In which direction does heat transfer occur during conduction?

(a) From hot zone to cold zone

(b) From cold zone to hot zone

(c) In both directions simultaneously

5. Which heat transfer mode occurs through electromagnetic wave emission?

(a) Conduction

(b) Radiation

(c) Convection

6. Which heat transfer mode is most significant in a vacuum?

(a) Conduction

(b) Radiation

(c) Convection

7. What is the greenhouse effect?

(a) A thermal conduction phenomenon

(b) A thermal convection phenomenon

(c) A thermal radiation phenomenon

8. How does convective heat transfer occur?

(a) Through movement of hot and cold particles

(b) Through direct contact between objects

(c) Through electromagnetic wave emission
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9. Which heat transfer mode occurs in solids?

(a) Conduction

(b) Radiation

(c) Convection

10. How does radiative heat transfer occur?

(a) Through movement of hot and cold particles

(b) Through direct contact between objects

(c) Through electromagnetic wave emission

11. Which heat transfer mode can be reduced by adding insulating material?

(a) Conduction

(b) Radiation

(c) Convection

12. What is Fourier’s Law?

(a) A law describing radiative heat transfer

(b) A law describing convective heat transfer

(c) A law describing conductive heat transfer

13. Which heat transfer mode is often responsible for heat losses in heating and
cooling systems?

(a) Conduction

(b) Radiation

(c) Convection

14. Which heat transfer mode can occur through a solid wall between two media at
different temperatures?

(a) Conduction

(b) Radiation

(c) Convection

15. In which medium is convective heat transfer most efficient?

(a) Solids

(b) Liquids

(c) Gases

16. Which material is the best thermal conductor?

(a) Air

(b) Water

(c) Copper
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17. How does a material’s thermal conductivity affect heat transfer through it?

(a) Higher conductivity facilitates heat transfer

(b) Higher conductivity impedes heat transfer

(c) Conductivity doesn’t affect heat transfer

18. How does material thickness affect heat transfer through it?

(a) Thicker material facilitates heat transfer

(b) Thicker material impedes heat transfer

(c) Thickness doesn’t affect heat transfer

19. How does adding insulation affect heat transfer through a wall?

(a) Increases heat transfer

(b) Decreases heat transfer

(c) Doesn’t affect heat transfer

20. Match the following letters (a, b, c, d, e, g, h) with their correct labels in both
diagrams:

• Thermometer

• Stirrer

• Support

• Thermostat

• Goniometer

• Metal rod

• Thermocouple

• Caliper

• Dilatometer (comparator)

• Immersion heater

• Electrical resistance

• Device for measuring linear expansion coefficient of metals

• Stopwatch

• Beaker

• Current generator

• Electronic thermometer

• Voltage generator

• Device for measuring thermal conductivity of metals

• Calorimeter

• Balance

• Graduated ruler
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0.1.7 Thermodynamics MCQ 7

1. Heat is a:

(a) � State function

(b) � Physical quantity

(c) � Other:

2. Internal energy is a:

(a) � State function

(b) � Physical quantity

(c) � Differential form

(d) � Exact differential

(e) � Other:

3. The internal energy of an ideal gas depends on:

(a) � Volume

(b) � Pressure

(c) � Temperature only

(d) � Volume and pressure

(e) � Temperature and volume

(f) � Other:

4. PV = nRT is the equation of a:

(a) � Ideal gas

(b) � Real gas

(c) � Other:

5. If pressure P is a state function, then its differential is:

(a) � Inexact

(b) � Exact

(c) � Other:

6. Thermal conductivity is a:

(a) � Positive constant

(b) � Negative constant

(c) � Non-constant

(d) � Other:

7. Fourier’s Law applies to:

(a) � Liquids
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(b) � Solids

(c) � Gases

(d) � All of the above

8. When a radiator heats a house, the observed heat transfer modes are:

(a) � Thermal conduction

(b) � Thermal convection

(c) � Thermal radiation

(d) � All three modes simultaneously

9. Heat flux density is:

(a) � Heat flow per unit area

(b) � Heat quantity per unit time

(c) � Heat received by the system

(d) � Other:

10. By analogy with electricity, thermal resistance is equivalent to electrical resis-
tance, which is the ratio between:

(a) � Temperature difference and heat flux

(b) � Temperature difference and heat flux density

(c) � Other:
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0.1.8 Thermodynamics exercice test 1

A gas with the equation of state V = V (T, P ) has the isobaric thermal expansion
coefficient α = R

PV and the isothermal compressibility coefficient χT = RT
V P 2 , where

R is the ideal gas constant (Mayer’s constant).

1. Express the differential dV of the gas volume in terms of α and χT as a
function of dT and dP .

2. By integration, deduce the equation of state of the gas, given that when
V = 2b, the condition T = bP = R holds.

Recall the definitions of the coefficients α and χT :

α =
1

V

(
∂V

∂T

)
P

, χT = − 1

V

(
∂V

∂P

)
T

Solution

1. The expression for the differential dV of the gas volume in terms of α and χT :

dV = V α dT − V χT dP

2. The equation of state of the gas:

V (T, P ) =
RT

P
+ C

Applying the given condition V = 2b when T = bP = R, we find the integra-
tion constant C, leading to:

V (T, P ) =
RT

P
+ b
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Solution: Thermodynamics exercice test 1

1. Expression for the differential dV
The total differential of V (T, P ) is given by:

dV =

(
∂V

∂T

)
P

dT +

(
∂V

∂P

)
T

dP

Using the definitions of α and χT , we can rewrite the partial derivatives:(
∂V

∂T

)
P

= V α and

(
∂V

∂P

)
T

= −V χT

Substituting these into the expression for dV , we obtain:

dV = V α dT − V χT dP

2. Integration to find the equation of state
Given the expressions for α and χT :

α =
R

PV
and χT =

RT

V P 2

Substitute these into the differential dV :

dV = V

(
R

PV

)
dT − V

(
RT

V P 2

)
dP =

R

P
dT − RT

P 2
dP

To integrate, rewrite dV as:

dV = R

(
dT

P
− T

P 2
dP

)
Notice that the term in parentheses is the exact differential of T

P :

d

(
T

P

)
=
dT

P
− T

P 2
dP

Thus:

dV = Rd

(
T

P

)
Integrate both sides:

V = R

(
T

P

)
+ C

where C is the integration constant.

Determine the constant C using the given condition: When V = 2b,
T = bP = R. From T = bP , we have P = T

b . Substituting T = R:

P =
R

b

87



Continuous assessments and examination.

Now, substitute V = 2b, T = R, and P = R
b into the equation:

2b = R

(
R
R
b

)
+ C = R

(
R · b
R

)
+ C = Rb+ C

Solving for C:
C = 2b−Rb = b(2−R)

However, since T = bP = R, we have b = R
P . But from the earlier substitution,

P = R
b , which is consistent. Thus, the simplest form is obtained by recognizing

that the condition T = bP = R implies b is a constant with appropriate units,
and the final equation of state is:

V (T, P ) =
RT

P
+ b
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0.1.9 Thermodynamics exercice test 2

Consider the differentials:

dH = CP dT + (h+ V ) dP and dS =
CP
T
dT +

h

T
dV

where CP and h are the calorimetric coefficients related to the single-phase system
under study.

1. By explicating the relations imposed by the fact that dH and dS are exact
total differentials, determine the coefficient h. Deduce the coefficient

(
∂CP
∂P

)
T

.

2. We now consider the equation of state PV − nRT = 0, where n and R are
constants. Compute h; show that CP does not depend on P . Calculate the
state functions H and S, assuming that CP does not depend on T .

3. We now consider the equation of state P (V −nb)−nRT = 0. Revisit question
2 under the same assumptions.
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Solution: Thermodynamics exercice test 2

Part 1: General Relations from Exact Differentials

Given the differentials:

dH = CP dT + (h+ V ) dP (1)

dS =
CP
T
dT +

h

T
dP (2)

a. Determining coefficient h

For dH to be an exact differential, we must have:(
∂CP
∂P

)
T

=

(
∂(h+ V )

∂T

)
P

(3)

For dS to be an exact differential, we must have:(
∂(CP/T )

∂P

)
T

=

(
∂(h/T )

∂T

)
P

(4)

Developing equation (4):

1

T

(
∂CP
∂P

)
T

=
1

T

(
∂h

∂T

)
P

− h

T 2(
∂CP
∂P

)
T

=

(
∂h

∂T

)
P

− h

T
(5)

From equation (3) and the thermodynamic identity:(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

= −h
T

Thus:

h = −T
(
∂V

∂T

)
P

(6)

b. Deduction of
(
∂CP

∂P

)
T

Substituting (6) into (5):(
∂CP
∂P

)
T

= −T
(
∂2V

∂T 2

)
P

+

(
∂V

∂T

)
P

−
(
∂V

∂T

)
P(

∂CP
∂P

)
T

= −T
(
∂2V

∂T 2

)
P
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Part 2: Ideal Gas Case PV = nRT

a. Calculation of h

From the equation of state:

V =
nRT

P
⇒
(
∂V

∂T

)
P

=
nR

P

Using equation (6):

h = −T
(
nR

P

)
= −nRT

P
= −V

Thus:
h = −V

b. Pressure Independence of CP

From 1.2: (
∂CP
∂P

)
T

= −T
(
∂2V

∂T 2

)
P

= 0

since V is linear in T . Therefore:

CP does not depend on P

c. State Functions H and S

Assuming CP constant:
For enthalpy:

dH = CPdT + (h+ V )dP = CPdT + 0 · dP

H(T, P ) = CPT +H0

For entropy:

dS =
CP
T
dT +

h

T
dP =

CP
T
dT − nR

P
dP

S(T, P ) = CP lnT − nR lnP + S0

Thus:
H(T ) = CPT +H0

S(T, P ) = CP lnT − nR lnP + S0

Part 3: Modified Gas Equation P (V − nb) = nRT

a. Calculation of h

From the equation of state:

V =
nRT

P
+ nb⇒

(
∂V

∂T

)
P

=
nR

P
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Thus h remains:

h = −T
(
nR

P

)
= −nRT

P
= −(V − nb)

h = −(V − nb)

b. Pressure Independence of CP

Again: (
∂2V

∂T 2

)
P

= 0⇒
(
∂CP
∂P

)
T

= 0

CP remains independent of P

c. State Functions H and S

For enthalpy:
dH = CPdT + (h+ V )dP = CPdT + nbdP

H(T, P ) = CPT + nbP +H0

For entropy:

dS =
CP
T
dT +

h

T
dP =

CP
T
dT − nR

P
dP

(same as ideal gas case)
Thus:

H(T, P ) = CPT + nbP +H0

S(T, P ) = CP lnT − nR lnP + S0 (same as ideal gas)

The entropy expression remains identical to the ideal gas case because the equa-
tion of state modification only affects the volume available to molecules (through
b) but not the temperature dependence of pressure.
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0.1.10 Thermodynamics exercise test 3

1. Ideal Gas – Mayer’s Relation

Show that for an ideal gas, the difference between the heat capacities at constant
pressure (CP ) and at constant volume (CV ) satisfies the relation:

CP − CV = nR

where n is the number of moles and R is the ideal gas constant.

2. Thermoelastic Coefficients of an Ideal Gas

For an ideal gas obeying the equation of state PV = nRT , express:

• The isobaric expansion coefficient α =
1

V

(
∂V

∂T

)
P

• The isothermal compressibility coefficient χT = − 1

V

(
∂V

∂P

)
T

3. Real Gas – Van der Waals Equation

A real gas follows the Van der Waals equation:(
P +

a

V 2
m

)
(Vm − b) = RT

where Vm is the molar volume, a and b are constants.
Calculate the isobaric expansion coefficient α for this gas.

4. General Relation Between CP and CV

Using general thermodynamic relations, show that:

CP − CV =
TV α2

χT

where α is the isobaric expansion coefficient and χT is the isothermal compress-
ibility coefficient.

5. Variation of CV for a Real Gas

Show that, for a real gas, the heat capacity at constant volume CV depends only
on temperature if the equation of state has the form:

P = Tf(V ) + g(V )

where f(V ) and g(V ) are arbitrary functions of volume.
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Solution: Thermodynamics exercice test 3

1. Mayer’s Relation for an Ideal Gas

For an ideal gas, we start from the definitions of heat capacities:

CP =

(
∂H

∂T

)
P

and CV =

(
∂U

∂T

)
V

With enthalpy H = U + PV and the equation of state PV = nRT , we have:

H = U + nRT

Differentiating:

dH = dU + nRdT

Thus:

CP dT = CV dT + nRdT

Finally:

CP − CV = nR

2. Thermoelastic Coefficients of an Ideal Gas

Isobaric Expansion Coefficient α :

α =
1

V

(
∂V

∂T

)
P

From PV = nRT , we get V = nRT
P so:(
∂V

∂T

)
P

=
nR

P

Thus:

α =
1

V
· nR
P

=
1

T

Isothermal Compressibility Coefficient χT :

χT = − 1

V

(
∂V

∂P

)
T

From V = nRT
P , we have: (

∂V

∂P

)
T

= −nRT
P 2

Therefore:

χT =
1

P
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3. Coefficient α for a Van der Waals Gas

The equation of state: (
P +

a

V 2
m

)
(Vm − b) = RT

We differentiate at constant pressure:(
0− 2a

V 3
m

dVm

)
(Vm − b) +

(
P +

a

V 2
m

)
dVm = RdT

Rearranging: [
P +

a

V 2
m

− 2ab

V 3
m

+
2a

V 2
m

]
dVm = RdT

The coefficient α becomes:

α =
R

Vm

[
P + 3a

V 2
m
− 2ab

V 3
m

]
4. General Relation Between CP and CV

Starting from the differential of entropy S(T, V ):

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

Using Maxwell’s relations and the definitions of heat capacities, we obtain:

CP − CV = T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

Introducing α and χT , we arrive at:

CP − CV =
TV α2

χT

5. Independence of CV with Respect to Volume

For a real gas with P = Tf(V ) + g(V ), we calculate:(
∂P

∂T

)
V

= f(V )

From the relation: (
∂CV
∂V

)
T

= T

(
∂2P

∂T 2

)
V

= 0

because P is linear in T .
Thus:

CV depends only on temperature
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0.2 Examination - Thermodynamics.

0.2.1 Final Examination - Thermodynamics 1

Exercise 1 (5 points)

Let v be the specific volume (m3 kg−1) of an ideal gas with molar mass M .

1. Show that the equation of state can be written as Pv = rT . Specify the
expression for r and its units.

2. Calculate the value of r for dioxygen.

3. Deduce the specific volume of dioxygen at 300 K and 1 bar.

Given: MO = 16 g mol−1; R = 8.31 J mol−1 K−1;
k = 1.38× 10−23 J K−1; 1 bar = 105 Pa.

Exercise 2 (7 points)

A futuristic dwelling consists of a hemispherical wall with inner radius R1 and
outer radius R2, placed on horizontal ground. Let O be the center of the complete
sphere and M a point in the wall (R1 ≤ r = OM ≤ R2). The wall material is
homogeneous and isotropic with mass density µ and specific heat capacity C.

A constant temperature T1 is maintained inside the dwelling and on the inner
wall surface, while temperature T2 < T1 is maintained in the outside air (thermal
reservoir) and on the outer wall surface.

1. Write the partial differential equation satisfied by the temperature T (r, t)
at any point in the material, assuming rotational symmetry about any axis
through O. Recall the Laplacian in spherical coordinates:

∆U =
1

r2

∂

∂r

(
r2∂U

∂r

)
2. Determine the steady-state temperature distribution within the material.

3. Express the heat flux escaping from the dwelling, neglecting ground effects.

4. Calculate the thermal resistance of the dwelling, still neglecting ground effects.

Exercise 3 (8 points)

Given: ∫ ∞
0

x2e−ax
2

dx =
1

4a

√
π

a
,

∫ ∞
0

x4e−ax
2

dx =
3

8a2

√
π

a

1. In an oven, cesium-133 behaves as a monoatomic ideal gas. A volume V
contains N atoms of mass m (number density n0 = N/V ) at temperature T .

(a) Explain the microscopic meaning of ”ideal gas”.

(b) Express the kinetic energy E of a monoatomic ideal gas atom as a function
of its velocity.
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2. Assuming Maxwellian statistics, the number of atoms in volume dV with
speed between v and v + dv is:

dN = A exp

(
− E

kT

)
v2dvdV

(a) Express the total number of atoms N in volume V as a function of A.

(b) Calculate the root-mean-square speed vq.

3. Define the internal energy U of this ideal gas in volume V and express it as a
function of absolute temperature T .

4. Using the ideal gas law, show that the pressure p can be written as:

p =
1

3
n0mv

2
q
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0.2.2 Final Examination - Thermodynamics 2

Exercise 1 (6 points)

The partial derivatives of the internal energy U(S, V,N) for a system with variable
number of moles N are given by:(

∂U

∂S

)
V,N

= T ;

(
∂U

∂V

)
S,N

= −P ;

(
∂U

∂N

)
S,V

= µ.

1. Write the differential form of U .

2. Establish the expression U = TS − PV + µN .

3. Deduce the Gibbs-Duhem relation: SdT − V dP +Ndµ = 0.

Exercise 2 (7 points)

A solid cylindrical copper rod of axis (OX), length l, radius a, and thermal con-
ductivity K is in contact at one end (x = 0) with a heat exchanger at temperature
T0. Its lateral surface and other end (x = l) are in contact with a fluid at constant
temperature Te (T0 > Te).

• We assume steady-state conditions and that the radial temperature gradient
within the rod is sufficiently weak to consider the temperature T (x) uniform in
the cross-section at position x. The rod exhibits thermal losses at its surface in
contact with the fluid, per unit time and surface area, given by h(T (x)− Te),
where T (x) is the temperature at the surface point considered and h is a
constant coefficient.

1. Determine the temperature distribution T (x) within the rod.

2. Calculate T (l).

Given: K = 389 W m−1 K−1, h = 155 W m−2 K−1, a = 1 mm, T0 = 340 K,
Te = 300 K, l = 10 cm.

Exercise 3 (7 points)

We consider only steady-state regimes, independent of time.
The interior of a room is separated from the exterior by a glass wall of surface

area S, orthogonal to the (OX) axis, with glass thermal conductivity K. Its inner
and outer faces are at temperatures Ti and Te respectively (Te < Ti).

1. The wall consists of a single glass pane of thickness e.

• Evaluate the heat flux Φ1 exiting the room through this wall as a function
of K, S, e, Ti, and Te.

• Calculate the thermal resistance Rth of the glass wall.

2. The wall consists of two glass panes of equal thickness e, separated by a
layer of air of thickness e′ with thermal conductivity K ′. (Only conduction is
considered.)
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• Evaluate the heat flux Φ2 exiting the room, then compute the ratio Φ2/Φ1.

3. Numerical Application: Te = 270 K, Ti = 292 K, e′ = e = 3 mm, K =
1.2 W m−1 K−1, K ′ = 0.025 W m−1 K−1.

Calculate Φ2/Φ1 and the temperatures T1 and T2 at the facing surfaces of the
two panes.

4. Graphically represent the temperature variations as a function of x in the
double-glazing system.
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0.2.3 Final Examination - Thermodynamics 3

Exercise 1 (6 points)

The partial derivatives of the internal energy U(S, V,N) for a system with variable
number of moles N are given by:(

∂U

∂S

)
V,N

= T ;

(
∂U

∂V

)
S,N

= −P ;

(
∂U

∂N

)
S,V

= µ

1. Write the differential form of U .

2. Establish the expression: U = TS − PV + µN .

3. Deduce the Gibbs-Duhem relation: SdT − V dP +Ndµ = 0

Exercise 2 (7 points)

A solid cylindrical copper rod of axis (OX), length l, radius a, and thermal con-
ductivity K has one end (x = 0) in contact with a heat exchanger at temperature
T0, while its lateral surface and other end (x = l) are in contact with a fluid at
constant temperature Te (with T0 > Te).

Under steady-state conditions, assuming the radial temperature gradient within
the rod is sufficiently weak to consider the temperature T (x) uniform in the cross-
section at abscissa x. The rod exhibits thermal losses at its surface in contact
with the fluid, per unit time and surface area, equal to h(T (x)− Te), where h is a
constant coefficient.

• Determine the temperature distribution T (x) within the rod.

• Calculate T (l).

Given: K = 389 W ·m−1 ·K−1, h = 155 W ·m−2 ·K−1, a = 1 mm, T0 = 340 K,
Te = 300 K, l = 10 cm.

Exercise 3 (7 points)

Consider only steady-state conditions, independent of time.

The interior of a room is separated from the exterior by a glass wall of surface
area S, orthogonal to the (OX) axis, with glass thermal conductivity K. Its inner
and outer faces are at temperatures Ti and Te respectively (Te < Ti).

3.1 Single-pane window of thickness e

(a) Evaluate the outgoing thermal flux Φ1 through this wall as a function of K,
S, e, Ti, and Te.

(b) Calculate the thermal resistance Rth of the glass wall.
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3.2 Double-pane window

The wall consists of two glass panes of equal thickness e, separated by an air gap
of thickness e′ with thermal conductivity K ′. Consider only conduction.

(a) Evaluate the outgoing thermal flux Φ2, then compute Φ2

Φ1
.

(b) Numerical application: Te = 270 K; Ti = 292 K; e′ = e = 3 mm; K =
1.2 W ·m−1 ·K−1; K ′ = 0.025 W ·m−1 ·K−1.

Compute Φ2

Φ1
and the temperatures T1 and T2 at the facing surfaces of the two

panes.

Plot the temperature variation as a function of x for the double-glazing system.
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0.2.4 Final Examination - Thermodynamics 4

Exercise 1 (7 points)

The partial derivatives of the internal energy U(S, V,N) for a system with variable
number of moles N are given by:(

∂U

∂S

)
V,N

= T ;

(
∂U

∂V

)
S,N

= −P ;

(
∂U

∂N

)
S,V

= µ

1. Write the differential form of U .

2. Establish the expression: U = TS − PV + µN .

3. Deduce the Gibbs-Duhem relation: SdT − V dP +Ndµ = 0

Exercise 2 (5 points)

• Verify that the following expression is an exact differential of some function
f(x, y):

x

(x2 + y2)2
dx+

y

(x2 + y2)2
dy

• Determine the function f(x, y).

Exercise 3 (8 points)

Consider only steady-state conditions, independent of time.
The interior of a room is separated from the exterior by a glass wall of surface

area S, orthogonal to the (OX) axis, with glass thermal conductivity K. Its inner
and outer faces are at temperatures Ti and Te respectively (Te < Ti).

3.1 Single-pane window of thickness e (Figure 1)

(a) Evaluate the outgoing thermal flux Φ1 through this wall as a function of K,
S, e, Ti, and Te.

(b) Calculate the thermal resistance Rth of the glass wall.

3.2 Double-pane window (Figure 2)

The wall consists of two glass panes of equal thickness e, separated by an air gap
of thickness e′ with thermal conductivity K ′. Consider only conduction.

(a) Evaluate the outgoing thermal flux Φ2, then compute Φ2

Φ1
.

(b) Numerical application:

Te = 270 K; Ti = 292 K;

e′ = e = 3 mm;

K = 1.2 W m−1 K−1;

K ′ = 0.025 W m−1 K−1
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0.2.5 Final Examination - Thermodynamics 5

Exercise 1 (10 points)

Consider the differential forms:

dH = CPdT + (h+ V )dP and dS =
CP
T
dT +

h

T
dP

where CP and h are calorimetric coefficients related to the single-phase system
under study.

1. By explicating the relations imposed by the fact that dH and dS are exact
differentials, determine the coefficient h. Deduce the coefficient

(
∂CP
∂P

)
T

.

2. Consider the equation of state PV − nRT = 0 where n and R are constants:

• Calculate h

• Show that CP does not depend on P

• Compute the state functions H and S assuming CP does not depend on
T

3. Now consider the equation of state P (V − nb)− nRT = 0:

• Repeat question 2 under the same assumptions

Exercise 2 (10 points)

A futuristic dwelling consists of a hemispherical wall with inner radius R1 and
outer radius R2, placed on horizontal ground. Let O be the center of the complete
sphere and M a point in the wall (such that OM = r with R1 ≤ r ≤ R2). The
wall material is homogeneous and isotropic with mass density µ and specific heat
capacity C.

A constant temperature T1 is maintained inside the dwelling and on the in-
ner wall surface, while a temperature T2 < T1 is maintained in the outside air
(considered as a thermal reservoir) and on the outer wall surface.

1. Write the partial differential equation satisfied by the temperature T (r, t)
at any point in the material. Assume rotational symmetry about any axis
through O. Recall the expression for the Laplacian of a scalar function U(r, t)
in spherical coordinates:

∆U =
1

r2

∂

∂r

(
r2∂U

∂r

)
2. In steady-state conditions, determine the temperature distribution within the

wall.

3. Express the heat flux escaping from the dwelling, neglecting ground effects.

4. What is the thermal resistance of the dwelling, still neglecting ground effects?

103



Continuous assessments and examination.

0.2.6 Final Examination - Thermodynamics 6

Exercise 1 (10 points)

Consider one mole of gas occupying volume Vm under pressure P at temperature
T .

1. Assume these quantities are related by the equation:(
P +

a

V 2
m

)
(Vm − b) = RT

where a, b and R are constants.

Using the intensive or extensive properties of the variables, derive the corre-
sponding equation for n moles.

2. Repeat the question for the equation:

P (Vm − b) exp

(
a

RTVm

)
= RT

Exercise 2 (10 points)

Given: ∫ ∞
0

x2e−ax
2

dx =
1

4a

√
π

a
,

∫ ∞
0

x4e−ax
2

dx =
3

8a2

√
π

a

1. In an oven, cesium-133 behaves as a monoatomic ideal gas. A volume V
contains N atoms of mass m (with number density n0 = N/V ) at temperature
T .

• Express the kinetic energy Ec of a monoatomic ideal gas atom as a function
of its velocity.

2. Assuming the gas follows Maxwellian statistics: the number of atoms in an
infinitesimal volume dV with speed between v and v + dv is:

dN = A exp

(
−Ec
kT

)
v2dvdV

(a) Express the total number of atoms N in volume V as a function of A.

(b) Calculate the root-mean-square speed vq using the previous result and the
relation f(v)dv = dN/N .

3. Define the internal energy U of the ideal gas in volume V and express it as a
function of absolute temperature T .

4. Using the ideal gas law, show that the pressure p can be written as:

p =
1

3
n0mv

2
q

Note: Boltzmann’s constant is k = R/NA and the number of moles is n =
N/NA, where NA is Avogadro’s number.
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0.2.7 Final Examination - Thermodynamics 7

Exercise 1 (10 points)

Recall the differential forms of internal energy U , enthalpy H, and entropy S for
a gas:

dU = CV dT + (l − P )dV

dH = CPdT + (h+ V )dP

dS =
CV
T
dT +

l

T
dV =

CP
T
dT +

h

T
dP

where P , V , and T represent pressure, volume, and temperature respectively.

1. What are the coefficients CV and CP called?

2. Prove the relations:

l = T

(
∂P

∂T

)
V

, h = −T
(
∂V

∂T

)
P

3. Calculate coefficients l and h for an ideal gas. Show that in this case CV and
CP depend only on temperature.

4. Prove that for one mole of ideal gas, the coefficients satisfy Mayer’s relation:

CP − CV = R

where R is the ideal gas constant.

5. For an ideal gas G with constant CV and γ = CP/CV , prove that during any
isentropic process the pressure and volume are related by Laplace’s relation:

PV γ = constant

6. For one mole of this ideal gas G, derive general expressions for:

• Internal energy U

• Entropy S (first as function of T and V , then as function of T and P )

Exercise 2 (10 points)

One mole of ideal gas with constant specific heat CV is enclosed in an adiabatic
cylinder with a piston. Initial state: (P0, V0, T0). A pressure P1 is suddenly applied
to the piston. Final equilibrium state: (P1, T1, V1).

1. Explain why this transformation is irreversible.

2. Express the work done on the gas in terms of P1, V0, and V1.

3. Express the internal energy change using T0 and T1.

4. Determine the final temperature T1 as function of T0, P0, P1, CV , and R.

5. What is the final volume V1? Express in terms of V0, P0, P1, CV , and R.

6. What limit does V1 approach as P1 →∞?
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0.2.8 Final Examination - Thermodynamics 8

Exercise 1 (10 points)

Consider a quantity n of a van der Waals gas with equation of state:(
p+

n2a

V 2

)
(V − nb) = nRT

where a, b and R are constants. Differentiating both sides leads to an equation of
the form:

Adp+BdV + CdT = 0

1. Find expressions for A, B, and C.

2. Express the following partial derivatives in terms of A, B, and C:

•
(
∂V
∂T

)
p

•
(
∂p
∂T

)
V

•
(
∂V
∂p

)
T

3. Derive expressions for the thermoelastic coefficients:

• α = 1
V

(
∂V
∂T

)
P

• β = 1
p

(
∂p
∂T

)
V

• χT = − 1
V

(
∂V
∂p

)
T

in terms of p, V , and possibly n, a, b, and R.

4. Derive expressions for these coefficients in the case of an ideal gas.

5. Verify whether the relation α
βχT

= p holds for the expressions obtained in the
previous questions.

Exercise 2 (10 points)

The internal energy U and entropy S of a single-phase system are state functions
with differential forms:

dU = CV dT + (l − P )dV

dS =
CV
T
dT +

l

T
dV

where CV is the isochoric heat capacity and l is the latent heat of expansion. These
calorimetric coefficients depend on P , V , T , and n.

1. Derive the relations imposed by the exactness of dU and dS.

2. Express l and
(
∂CV
∂V

)
T

in terms of thermodynamic quantities and their partial
derivatives.
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3. Consider a closed system of n moles of ideal gas:

• Determine the expression for l

• Show that the isochoric heat capacity CV is independent of V

• Find expressions for the state functions U and S, assuming CV is inde-
pendent of T
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0.2.9 Final Examination - Thermodynamics 9

Exercise 1 (5 points)

A gas obeys the van der Waals equation for one mole:(
P +

a

V 2

)
(V − b) = RT

where a and b are positive constants.

1. What are the SI units of a and b?

2. Write the van der Waals equation for n moles.

Exercise 2 (6 points)

A gas with equation of state V = V (T, P ) has isobaric thermal expansion coeffi-
cient:

α =
R

PV

and isothermal compressibility:

χT =
RT

V P 2

where R is the ideal gas constant (Mayer’s constant).

• Express the differential dV in terms of α, χT , dT , and dP .

• Through integration, deduce the equation of state of the gas, knowing that
when V = 2b, T = bP/R. Recall the definitions:

α =
1

V

(
∂V

∂T

)
P

, χT = − 1

V

(
∂V

∂P

)
T

Exercise 3 (9 points)

Consider an elastic filament whose mechanical behavior is analogous to a spring.
A thermodynamic state of this filament is defined by its temperature T and elon-
gation l or tension force f , related by:

f = −alT 2

where a is a positive constant.

For an infinitesimal reversible transformation, the elementary work and heat
received by the filament are:

δW = −fdl and δQ = CldT + λdl
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A. Determination of Calorimetric Coefficients and Entropy

1. Using the differential forms of the first and second laws of thermodynamics
and the free energy, determine λ and

(
∂Cl
∂l

)
T

in terms of T , l, and a.

2. Determine Cl(l, T ) knowing that at zero elongation the heat capacity is Cl(0, T ) =
bT 2 where b is a positive constant.

3. Determine the entropy state function and show that it can be expressed as:

S(l, T ) =
bT 2

2
− al2T + S0

where S0 is a constant.

B. Isothermal Transformation

A mass m is suspended from the filament in Earth’s gravitational field (g =
9.81 m s−2). The experimenter slowly moves the mass from zero elongation (fil-
ament at rest) to the equilibrium position l1. The transformation is reversible
and occurs in contact with a thermostat at temperature T0 (room temperature).
Express results in terms of m, g, T0, and a.

1. Determine l1.

2. Calculate the work W1 received by the filament.
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0.2.10 Final Examination - Thermodynamics 10

Exercise 1 (5 points)

A gas with equation of state V = V (T, P ) has isobaric thermal expansion coeffi-
cient:

α =
R

PV

and isothermal compressibility:

χT =
RT

V P 2

where R is the ideal gas constant (Mayer’s constant).

• Express the differential dV in terms of α, χT , dT , and dP .

• Through integration, deduce the equation of state of the gas, knowing that
when V = 2b, T = bP

R . Recall the definitions:

α =
1

V

(
∂V

∂T

)
P

, χT = − 1

V

(
∂V

∂P

)
T

Exercise 2 (7 points)

One mole of monoatomic ideal gas contained in a cylinder undergoes a quasi-
static and mechanically reversible cycle ABCA as described. The process AB is
isothermal at temperature TA = 301 K. At point A, PA = 1.0 bar. The process
BC is isobaric at pressure PB = 5.0 bar. The process CA is isochoric.

1. Calculate the volumes VA, VB, and VC , and the temperature TC .

2. Calculate the work and heat transfer received by the gas during each process
AB, BC, and CA, and their sum.

Exercise 3 (8 points)

n moles of a monoatomic ideal gas undergo a cycle consisting of the following
reversible transformations:

• An adiabatic process A(PA, VA, T2)→ B(PB, VB, T1) with T1 > T2

• An isothermal expansion B → C(PC , VC , T1)

• An adiabatic process C → D(PD, VD, T2)

• An isothermal compression D → A

Assume the heat capacity at constant volume is independent of temperature.

1. Sketch the cycle in the (P, V ) plane (Clapeyron diagram).

2. Prove the relations PAPC = PBPD and VAVC = VBVD.
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3. Determine the work WAB, WBC , WCD, and WDA received by the gas in each
process, expressed in terms of the initial and final state coordinates.

4. What is the relationship between WAB and WCD? Derive this directly using
the First Law of Thermodynamics and the ideal gas properties.

5. Determine the heat transfers QAB, QBC , QCD, and QDA received by the gas
during each process, expressed in terms of the cycle vertex coordinates, and
specify their signs.

6. Establish a relationship between QBC and QDA.

7. Calculate the total work W received by the gas during the cycle.

8. Determine the cycle efficiency η.
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Conclusion

The problems in this collection are organized into several core areas of thermody-
namics:

1. Equations of State and Thermodynamic Potentials:

• Exercises focus on deriving and applying equations of state for ideal and
real gases (e.g., van der Waals equation)

• Problems involving differential forms of internal energy (U), enthalpy (H),
and entropy (S) emphasize the importance of exact differentials

2. Heat Transfer and Thermal Properties:

• Questions on conduction, convection, and radiation explore practical appli-
cations

• The use of coefficients like thermal expansion (α) highlights the interplay
between properties

3. Kinetic Theory and Statistical Mechanics:

• Problems involving Maxwellian velocity distributions bridge thermodynam-
ics with statistical mechanics

• The derivation of pressure as p = 1
3n0mv

2
q reinforces microscopic interpre-

tation

4. Thermodynamic Cycles and Irreversible Processes:

• Cycles are analyzed to calculate work, heat transfer, and efficiency (η)

• Irreversible transformations illustrate key concepts like entropy production

This compilation serves as an effective tool for both learning and assessment:

• Conceptual Understanding: Tests foundational principles to advanced topics

• Problem-Solving Skills: Integrates mathematical rigor with physical intuition

• Exam Preparation: Mirrors typical exam formats with MCQs and structured
problems

The problems reflect real-world challenges:

• Energy Efficiency: Questions on thermal resistance relevant to building insu-
lation
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Conclusion

• Material Science: Analysis of gas behavior for industrial gas storage

• Environmental Physics: Heat engines tie into sustainable energy conversion

This compilation successfully bridges theoretical thermodynamics with practical
problem-solving. By mastering these exercises, learners will develop the analytical
skills needed for scientific challenges.
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